首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two recombinant collagen-like proteins consisting of cell adhesion domains derived from native type I collagen were designed and synthesized by a genetic engineering method. The cross-linking sequence, GPPGPCCGGG, derived from collagen III was used to promote triple helix formation through the disulfide bonds formed among three chains by flanking the peptide at the C-terminal of the collagen-like proteins. SDS-PAGE and western-blotting data suggested possibility of the formation of a triple helix structure for both recombinant proteins. CD spectra and thermal stability analyses indicated that the triple-helix structure in the collagen-like proteins was pH-dependent and stabilized under acidic environmental condition. Moreover, the collagen-like protein flanked with the cross-linking sequence at the C-terminal showed the most stable triple-helical conformation under acidic conditions.  相似文献   

2.
Makareeva E  Leikin S 《PloS one》2007,2(10):e1029
Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30-34 degrees C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50-200 microM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization.  相似文献   

3.
Collagen is the most abundant protein of mammals and produces highly organized ultrastructures in the extracellular matrix. There are at least 27 types of collagen in mammalian tissues. While fibrillar collagen (eg. types I, II, III, V and XI) assembles into large fibril structures in the extracellular matrix, type IV collagen produces meshwork-like structures in the basement membranes. As collagen has a distinct triple helix structure composed of Gly-X-Y repeats whose Y position is often hydroxyproline, its folding and maturation process differs considerably from globular proteins. Type I collagen is an assembly of two alpha-1 chains and one alpha-2 chain, and each of the alpha chains contain the N-terminal propeptide, C-terminal propeptide and central triple helical region. The 47-kDa heat shock protein (HSP47) is an endoplasmic reticulum (ER)-resident molecular chaperone that specifically recognizes the triple helical region of collagen and is required for productive folding and maturation of collagen molecules. Only in the presence of HSP47, collagen type I molecules can be assembled into the correctly folded triple helices in the ER of mouse embryos without producing misfolded or non-functionally aggregated molecules. HSP47-knockout embryos die just after 10.5 day due to the absence of functional collagen. Recent our data demonstrated that the non-fibrillar network-forming collagen type IV also requires HSP47 for productive folding and maturation. Here, we discuss the role of HSP47 in the folding and maturation of collagen type IV as well as type I.  相似文献   

4.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

5.
HSP47 is a molecular chaperone that plays an unknown role during the assembly and transport of procollagen. Our previous studies showed that, unlike most chaperones, HSP47 interacts with a correctly folded substrate. We suggested that HSP47 either stabilizes the correctly folded collagen helix from heat denaturation or prevents lateral aggregation prior to its transport from the endoplasmic reticulum. In this study we have addressed the role of triple helix stability in the binding of HSP47 to procollagen by expressing procollagen molecules with differing thermal stabilities and analyzing their ability to interact with HSP47 within the endoplasmic reticulum. Our results show that HSP47 interacts with thermostable procollagen molecules, suggesting that helix stabilization is not the primary function of HSP47 and that the interaction of HSP47 with procollagen depends upon the presence of a minimum of one Gly-X-Arg triplet within the triple helical domain. Interestingly, procollagen chains containing high proportions of stabilizing triplets formed triple helices and interacted with HSP47 even in the absence of proline hydroxylation, demonstrating that recognition does not depend upon this modification. Our results support the view that HSP47 functions early in the secretory pathway by preventing the lateral aggregation of procollagen chains.  相似文献   

6.
The collagen binding chaperone HSP47 interacts with procollagen in the endoplasmic reticulum and plays a crucial role in the biosynthesis of collagen. We recently demonstrated that typical collagen model peptides, (Pro-Pro-Gly)(n), possess sufficient structural information for interaction with HSP47 (Koide, T., Asada, S., and Nagata, K. (1999) J. Biol. Chem. 274, 34523-34526). Here we show that binding of (Gly-Pro-Pro)(n) peptides to HSP47 can be detected using the two-hybrid system in yeast if a trimerizing domain is fused to the C termini of the peptides. Some peptides interacted with HSP47 at a lowered assay temperature at 24 degrees C but not at 30 degrees C, indicating the importance of conformational change of the substrate peptides. To analyze the spectrum of HSP47 substrate sequences, we performed two-hybrid screening of collagen-like peptides in designed random peptide libraries using HSP47 as a bait. In selected peptides, the enrichment ratio calculated for each amino acid residue correlated strongly with the contribution of the residue to triple-helix stability independently determined using synthetic collagen model peptides. Taken together, our results suggest that HSP47 preferentially recognizes collagenous Gly-X-Y repeats in triple-helical conformation. We also demonstrated that screening of combinatorial peptide libraries is a powerful strategy to determine conformational requirements as well as the elucidation of binding motifs in primary structure.  相似文献   

7.
The unique folding of procollagens in the endoplasmic reticulum is achieved with the assistance of procollagen-specific molecular chaperones. Heat-shock protein 47 (HSP47) is an endoplasmic reticulum-resident chaperone that plays an essential role in normal procollagen folding, although its molecular function has not yet been clarified. Recent advances in studies on the binding specificity of HSP47 have revealed that Arg residues at Yaa positions in collagenous Gly-Xaa-Yaa repeats are critical for its interactions (Koide, T., Takahara, Y., Asada, S., and Nagata, K. (2002) J. Biol. Chem. 277, 6178-6182; Tasab, M., Jenkinson, L., and Bulleid, N. J. (2002) J. Biol. Chem. 277, 35007-35012). In the present study, we further examined the client recognition mechanism of HSP47 by taking advantage of systems employing engineered collagen model peptides. First, in vitro binding studies using conformationally constrained collagen-like peptides revealed that HSP47 only recognized correctly folded triple helices and that the interaction with the corresponding single-chain polypeptides was negligible. Second, a binding study using heterotrimeric model clients for HSP47 demonstrated a minimal requirement for the number of Arg residues in the triple helix. Finally, a cross-linking study using photoreactive collagenous peptides provided information about the spatial orientation of an HSP47 molecule in the chaperone-collagen complex. The obtained results led to the development of a new model of HSP47-collagen complexes that differs completely from the previously proposed "flying capstan model" (Dafforn, T. R., Della, M., and Miller, A. D. (2001) J. Biol. Chem. 276, 49310-49319).  相似文献   

8.
Collagens play important roles in development and homeostasis in most higher organisms. In order to function, collagens require the specific chaperone HSP47 for proper folding and secretion. HSP47 is known to bind to the collagen triple helix, but the exact positions and numbers of binding sites are not clear. Here, we employed a collagen II peptide library to characterize high-affinity binding sites for HSP47. We show that many previously predicted binding sites have very low affinities due to the presence of a negatively charged amino acid in the binding motif. In contrast, large hydrophobic amino acids such as phenylalanine at certain positions in the collagen sequence increase binding strength. For further characterization, we determined two crystal structures of HSP47 bound to peptides containing phenylalanine or leucine. These structures deviate significantly from previously published ones in which different collagen sequences were used. They reveal local conformational rearrangements of HSP47 at the binding site to accommodate the large hydrophobic side chain from the middle strand of the collagen triple helix and, most surprisingly, possess an altered binding stoichiometry in the form of a 1:1 complex. This altered stoichiometry is explained by steric collisions with the second HSP47 molecule present in all structures determined thus far caused by the newly introduced large hydrophobic residue placed on the trailing strand. This exemplifies the importance of considering all three sites of homotrimeric collagen as independent interaction surfaces and may provide insight into the formation of higher oligomeric complexes at promiscuous collagen-binding sites.  相似文献   

9.
There is a confusion in the application of circular dichroism (CD) spectroscopy in analyzing collagen's structure for the overlapping of the spectral shapes and positions of the collagen triple helix and poly(proline-II)-like structure. The unique repetitive sequence of the collagen triple helix is susceptible to misalignment during the spontaneous assembly. Such misaligned structures are usually difficult to be characterized by CD or NMR spectroscopy. Here, RP-HPLC was developed as a conformational characterization technique for synthetic collagen-like peptides based on the different hydrophobicities exhibited by the triple-helical and unassembled peptides. RP-HPLC was also used to study thermal transitions and to measure melting point temperatures (Tm) of the collagen-like peptides.  相似文献   

10.
We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI patients. In contrast to peptides, we found no correlations of DeltaTm with the identity of the substituting residue. Instead, we observed regular variations in DeltaTm with the substitution location in different triple helix regions. To relate the DeltaTm map to peptide-based stability predictions, we extracted the activation energy of local helix unfolding (DeltaG) from the reported peptide data. We constructed the DeltaG map and tested it by measuring the H-D exchange rate for glycine NH residues involved in interchain hydrogen bonds. Based on the DeltaTm and DeltaG maps, we delineated regional variations in the collagen triple helix stability. Two large, flexible regions deduced from the DeltaTm map aligned with the regions important for collagen fibril assembly and ligand binding. One of these regions also aligned with a lethal region for Gly substitutions in the alpha1(I) chain.  相似文献   

11.
The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.  相似文献   

12.
The collagen-like polytripeptide (hydroxyproline-proline-glycine)10 was synthesized with a solid-phase procedure. Analytical ultracentrifugation indicated that the peptide in aqueous solution at 6 °C had a molecular weight of 2550, the expected size of a single chain. The peptide had a relatively small negative optical rotation at 578 nm, and it did not show a thermal transition as is seen with collagen or collagen-like polytripeptides which form triple helices. At low temperatures in aqueous solution, the circular dichroism spectrum was similar to that of triple-helical collagen and collagen-like peptides in that there was a positive peak at 224 nm and a negative peak at 200 nm. The amplitudes of the peaks, however, were considerably less than the peaks obtained with triple-helix proteins and peptides. Since (proline-proline-glycine)10 was triple helical under the same conditions, the results demonstrated that hydroxyproline in the X-position of the repeating -glycine-X-Y- sequences decreases rather than increases, the thermal stability of the triple helix. This positional specificity cannot be explained by any of the current models for the structure of the triple helix or any of the current proposals for how hydroxyproline stabilizes the structure.  相似文献   

13.
The relationship between primary sequence and collagen triple-helix formation is relatively well characterized, while higher levels of structural assembly from these sequences is poorly understood. To address this gap, a new collagen-like triblock peptide design was used to study the relationship between amino acid sequence and supramolecular assembly. Four collagen-like peptides with the sequence (Glu)(5)(Gly-Xaa-Hyp-Gly-Pro-Hyp)(6)(Glu)(5) and corresponding to Xaa = alanine, proline, serine, or valine, and an analogous peptide without the glutamic acid end blocks, were solubilized in water at high concentrations (20-150 mg/mL) and analyzed in optical polarizing microscopy and transmission electron microscopy. Some of the peptides self-assembled into supramolecular structures, the nature of which was determined by the core collagen-like sequence. The globular end blocks appeared necessary for these short triple-helix-forming peptides to spontaneously organize into supramolecular structures in solution and also provided enhanced thermal stability based on CD analysis. The results indicate a strong dependence of the peptide triblock assembly behavior on the identity of the guest residue Xaa; nematic order when Xaa was valine, no organization when Xaa was serine, and banded spherulites displaying a cholesteric-like twist when Xaa was proline or alanine. According to these results, the identity of the amino acid in position Xaa of the triplet Gly-Xaa-Yaa dramatically determined the type of supramolecular assembly formed by short triple helices based on collagen-triblock like sequences. Moreover, the structural organization observed for these collagen-triblock peptides was analogous to some assemblies observed for native collagen in vivo and in vitro. The amino acid sequence in the native collagen proteins may therefore be a direct determinant of the different supramolecular architectures found in connective tissues.  相似文献   

14.
Four small type I collagen CNBr peptides containing complete natural sequences were purified from bovine skin and investigated by CD and 1H- and 13C-nmr spectroscopies to obtain information concerning their conformation and thermal stability. CD showed that a triple helix was formed at 10 degrees C in acidic aqueous solution by peptide alpha l(I) CB2 only, and to lesser extent, by alpha 1(I) CB4, whereas peptides alpha 1(I) CB5 and alpha 2(I) CB2 remained unstructured. Analytical gel filtration confirmed that peptides alpha 1(I) CB2 and alpha 1(I) CB4 only were able to form trimeric species at temperature between 14 and 20 degrees C, and indicated that the monomer = trimer equilibrium was influenced by the chaotropic nature of the salt present in the eluent, by its concentration, and by temperature variations. CD measurements at increasing temperatures showed that alpha 1(I) CB2 was less stable than its synthetic counterpart due to incomplete prolyl hydroxylation of the preparation from the natural source. 1H- and 13C-nmr spectra acquired in the temperature range 0-47 and 0-27 degrees C, respectively, indicated that with decreasing temperature the most abundant from of alpha 1(I) CB2 was in slow exchange with an assembled form, characterized by broad lines, as expected for the triple-helical conformation. A large number of trimer cross peaks was observed both in the proton and carbon spectra, and these were most likely due to the nonequivalence of the environments of the three chains in the triple helix. This nonequivalence may have implications for the aggregation of collagen molecules and for collagen binding to other molecules. The thermal transition from trimer to monomer was also monitored by 1H-nmr following the change in area of the signal belonging to one of the two beta protons of the C-terminal homoserine. The unfolding process was found to be fully reversible with a melting temperature of 13.4 degrees C, in agreement with CD results. The qualitative superposition of the melting curves obtained by CD for the peptide bond characteristics and by nmr for a side chain suggests that triple-helical backbone and side chains constitute a single unit.  相似文献   

15.
Native collagen polypeptides exist in a unique triple helical conformation resistant to most proteinases. In this study, the stability of type I collagen triple helix, employing a mixture of trypsin and alpha-chymotrypsin as a proteolytic probe, was examined. The degradation of type I [3H]collagen was monitored as 3H-labeled peptides soluble in trichloroacetic acid (TCA) or by sodium dodecyl sulfate (SDS)-polyacrylamide slab gel electrophoresis. In one set of experiments, collagen substrates were preincubated at various temperatures for up to 8 h, followed by a 15-min proteolytic treatment at the same temperature. At 43 degrees C, most of the collagen was degraded, while the fraction of the substrate degraded at 40, 38, and 35 degrees C was 53, 41 and 19%, respectively. This fraction was independent of the preincubation time which varied from 10 to 480 min. Thus, at any given temperature, a constant fraction of the collagen substrate was susceptible to proteolysis. Measurement of the midpoint temperature (Tm) of the helix to coil transformation for type I collagen, at neutral pH employing an increasing temperature gradient and brief proteolysis at the individual temperatures, indicated a value of 38.8 degrees C. However, determination of the Tm by employing proteolytic digestions at a constant temperature (30 degrees C) using conditions under which the nonhelical peptides are readily digested to TCA-soluble peptides while native collagen resists such proteolysis, indicated a value of 42.7 degrees C. In further studies, collagen was subjected to continuous proteolysis for up to 24 h. A large fraction of collagen was digested at 30 or 34 degrees C, temperatures well below the Tm of the helix to coil transformation. SDS-polyacrylamide gel electrophoresis of the degradation products obtained at these temperatures revealed multiple cleavage fragments. Finally, temperature double-jump experiments indicated that the destabilization of the triple helix is reversible provided that the Tm of the substrate is not exceeded. The results provide evidence for reversible and local relaxation of the collagen triple helix.  相似文献   

16.
Heat-shock protein 47 (HSP47) is a chaperone that facilitates the proper folding of procollagen. Our previous studies showed that the high-affinity HSP47-binding motif in the collagen triple helix is Xaa-(Thr/Pro)-Gly-Xaa-Arg-Gly. In this study, we further investigated structural requirements for the HSP47-binding motif, using synthetic triple-helical collagen-model peptides with systematic amino acid substitutions at either the Thr/Pro (=Yaa?3) or the Arg (=Yaa0) position. Results obtained from in vitro binding assays indicated that HSP47 detects the side-chain structure of Arg at the Yaa0-position, while the Yaa?3 amino acid serves as the secondary recognition site that affects affinity to HSP47.  相似文献   

17.
HSP47 is an essential procollagen-specific molecular chaperone that resides in the endoplasmic reticulum of procollagen-producing cells. Recent advances have revealed that HSP47 recognizes the (Pro-Pro-Gly)(n) sequence but not (Pro-Hyp-Gly)(n) and that HSP47 recognizes the triple-helical conformation. In this study, to better understand the substrate recognition by HSP47, we synthesized various collagen model peptides and examined their interaction with HSP47 in vitro. We found that the Pro-Arg-Gly triplet forms an HSP47-binding site. The HSP47 binding was observed only when Arg residues were incorporated in the Yaa positions of the Xaa-Yaa-Gly triplets. Amino acids in the Xaa position did not largely affect the interaction. The recognition of the Arg residue by HSP47 was specific to its side-chain structure because replacement of the Arg residue by other basic amino acids decreased the affinity to HSP47. The significance of Arg residues in HSP47 binding was further confirmed by using residue-specific chemical modification of types I and III collagen. Our results demonstrate that Xaa-Arg-Gly sequences in the triple-helical procollagen molecule are dominant binding sites for HSP47 and enable us to predict HSP47-binding sites in homotrimeric procollagen molecules.  相似文献   

18.
Unlabeled collagenous proteins were quantified as inhibitors of binding of native, soluble, radioiodinated type I collagen to the fibroblast surface. Collagen types IV, V a minor cartilage isotype (1 alpha 2 alpha 3 alpha), and the collagenlike tail of acetylcholinesterase did not inhibit binding. Collagen types II and III behaved as competitive inhibitors of type I binding. Denaturation of native collagenous molecules exposed cryptic inhibitory determinants in the separated constituent alpha chains. Inhibition of binding by unlabeled type I collagen was not changed by enzymatic removal of the telopeptides. Inhibitory determinants were detected in cyanogen bromide-derived peptides from various regions of helical alpha 1 (I) and alpha 1(III) chains. The aminoterminal propeptide of chick pro alpha 1(I) was inhibitory for binding, whereas the carboxyterminal three-chain propeptide fragment of human type I procollagen was not. The data are discussed in terms of the proposal that binding to surface receptors initiates the assembly of periodic collagen fibrils in vivo.  相似文献   

19.
Collagen is a popular biomaterial in many specific biological interactions as well as a structural element. In this work, the recombinant collagen-like proteins were synthesized using Escherichia coli expression system. A foldon sequence, GYIPEAPRDGQAYVRKDGEWVLLSTFL, derived from the native T4 phage fibritin was incorporated at the C-terminal of collagen-like protein molecules to stabilize the triple helix formed in the proteins. The differential scanning calorimetry and thermogravimetric analysis measurements showed that the thermostability of the recombinant collagen-like proteins was significantly improved when compared with those without the foldon sequence at the C-terminal. Fourier transform infrared and scanning electron microscopy observations indicated that the collagen-like proteins forms the triple helix structure and prefer to aggregate as fibrils, same as the native collagen. Moreover, the mice fibroblasts L929 cells could attach and grew very well on the recombinant collage-like proteins. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cell biocompatibility of collagen-like proteins produced in this work was even better than that of native collagen, suggesting that the collagen-like proteins may be a satisfactory candidate for the future applications as a biomaterial.  相似文献   

20.
Decorin is a small leucine-rich chondroitin/dermatan sulfate proteoglycan reported to interact with fibrillar collagens through its protein core and to localize at d and e bands of the collagen fibril banding pattern. Using a solid-phase assay, we have determined the interaction of peptides derived by CNBr cleavage of type I and type II collagen with decorin extracted from bovine tendon and its protein core and with a recombinant decorin preparation. At least five peptides have been found to interact with all three decorin samples. The interaction of peptides with tendon decorin has a dissociation constant in the nanomolar range. The triple helical conformation of the peptide trimeric species is a necessary requisite for the binding. All positive peptides have a region within the d and e bands of collagen fibrils. Two chemical derivatives of collagens and of positive peptides were prepared by N-acetylation and N-methylation of the primary amino group of Lys/Hyl side chains. Chemical modifications performed in mild conditions do not significantly alter the thermal stability of peptide trimeric species whereas they affect the interaction with decorin: N-acetylation eliminates both the positive charge and the binding to decorin, whereas N-methylation preserves the cationic character and modulates the binding. We conclude that decorin makes contacts with multiple sites in type I collagen and probably also in type II collagen and that some collagen Lys/Hyl residues are essential for the binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号