首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the actions of the novel enzyme-resistant, NH2-terminally modified GIP analog (Hyp(3))GIP and its fatty acid-derivatized analog (Hyp(3))GIPLys(16)PAL. Acute effects are compared with the established GIP receptor antagonist (Pro(3))GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP receptor-transfected fibroblasts and in clonal pancreatic BRIN-BD11 cells, respectively. Likewise, in obese diabetic ob/ob mice, intraperitoneal administration of GIP analogs significantly inhibited the acute antihyperglycemic and insulin-releasing effects of native GIP. Administration of once daily injections of (Hyp(3))GIP or (Hyp(3))GIPLys(16)PAL for 14 days resulted in significantly lower plasma glucose levels (P < 0.05) after (Hyp(3))GIP on days 12 and 14 and enhanced glucose tolerance (P < 0.05) and insulin sensitivity (P < 0.05 to P < 0.001) in both groups by day 14. Both (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL treatment also reduced pancreatic insulin (P < 0.05 to P < 0.01) without affecting islet number. These data indicate that (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL function as GIP receptor antagonists with potential for ameliorating obesity-related diabetes. Acylation of (Hyp(3))GIP to extend bioactivity does not appear to be of any additional benefit.  相似文献   

2.
Glucose-dependent insulinotropic polypeptide (GIP) is an important gastrointestinal hormone, which regulates insulin release and glucose homeostasis, but is rapidly inactivated by enzymatic N-terminal truncation. Here we report the enzyme resistance and biological activity of several Glu(3)-substituted analogues of GIP namely; (Ala(3))GIP, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP. Only (Lys(3))GIP demonstrated moderately enhanced resistance to DPP-IV (p<0.05 to p<0.01) compared to native GIP. All analogues demonstrated a decreased potency in cAMP production (EC(50) 1.47 to 11.02 nM; p<0.01 to p<0.001) with (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated cAMP production (p<0.05). In BRIN-BD11 cells, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP did not stimulate insulin secretion with both (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated insulin secretion (p<0.05). Injection of each GIP analogue together with glucose in ob/ob mice significantly increased the glycaemic excursion compared to control (p<0.05 to p<0.001). This was associated with lack of significant insulin responses. (Ala(3))GIP, (Phe(3))GIP and (Tyr(3))GIP, when administered together with GIP, significantly reduced plasma insulin (p<0.05 to p<0.01) and impaired the glucose-lowering ability (p<0.05 to p<0.01) of the native peptide. The DPP-IV resistance and GIP antagonism observed were similar but less pronounced than (Pro(3))GIP. These data demonstrate that position 3 amino acid substitution of GIP with (Ala(3)), (Phe(3)), (Tyr(3)) or (Pro(3)) provides a new class of functional GIP receptor antagonists.  相似文献   

3.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. This study has utilised numerous well-characterised dipeptidyl peptidase IV-resistant GIP analogues to evaluate the glucagonotropic actions of GIP in Wistar rats and isolated rat islets. Intraperitoneal administration of GIP analogues (25 nmol/kg body weight) in combination with glucose had no effect on circulating glucagon concentrations compared to controls in Wistar rats. However, plasma glucose concentrations were significantly (p<0.05 to p<0.001) lowered by the GIP-receptor agonists, N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL. The GIP antagonist, (Pro3)GIP, caused a significant (p<0.05) reduction in glucagon levels following concurrent administration with saline in Wistar rats. In isolated rat islets native GIP induced a significant (p<0.01) enhancement of glucagon release at basal glucose concentrations, which was completely annulled by (Pro3)GIP. Furthermore, glucagon release in the presence of GLP-1, GIP(Lys37)PAL, N-AcGIP(Lys37)PAL and (Pro3)GIP was significantly (p<0.05 to p<0.001) decreased compared to native GIP in isolated rat islets. These data indicate a modest effect of GIP on glucagon secretion from isolated rat islets, which was not observed in vivo. However, the GIP agonists N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL had no effect on glucagon release demonstrating an improved therapeutic potential for the treatment of type 2 diabetes.  相似文献   

4.
Glucose-dependent insulinotropic polypeptide (GIP) is a key physiological insulin releasing peptide and potential antidiabetic agent. The present study was undertaken in an attempt to develop small molecular weight GIP agonist and antagonist molecules. The bioactivity of two modified C-terminally truncated fragment GIP peptides, GIP(1-16) and (Pro3)GIP(1-16), was examined in terms of insulin secretion and glucose homeostasis using BRIN-BD11 cells and type 2 diabetic mice. In vitro insulin release studies demonstrated that GIP(1-16) and (Pro3)GIP(1-16) possessed weak GIP-receptor agonist and antagonistic properties, respectively. Intraperitoneal administration of GIP(1-16) in combination with glucose to obese diabetic (ob/ob) mice did not effect the glycaemic excursion and had a marginal effect on insulin release. GIP(1-16) was substantially less effective than the native GIP(1-42). (Pro3)GIP(1-16) administration significantly curtailed (P < 0.05) the insulinotropic and glucose lowering effects of native GIP, but was significantly less effective than (Pro3)GIP. Based on the established concept of a therapeutic benefit of GIP receptor antagonism in obesity-diabetes, ob/ob mice received once daily injection of (Pro3)GIP(1-16) for 14 days. No significant effects were observed on food intake, body weight, HbA1c, glucose tolerance, metabolic response to feeding and either insulin secretion or insulin sensitivity following prolonged (Pro3)GIP(1-16) treatment. These data demonstrate that C-terminal truncation of GIP or (Pro3)GIP yields small molecular weight GIP molecules with significantly reduced biological activity that precludes therapeutic utility.  相似文献   

5.
Effects of chemical ablation of the GIP and GLP-1 receptors on metabolic aspects of obesity-diabetes were investigated using the stable receptor antagonists (Pro3)GIP and exendin(9-39)amide. Ob/ob mice received a daily i.p. injection of saline vehicle, (Pro3)GIP, exendin(9-39)amide or a combination of both peptides over a 14-day period. Non-fasting plasma glucose levels were significantly (p<0.05) lower in (Pro3)GIP-treated mice compared to control mice after just 9 days of treatment. (Pro3)GIP-treated mice also displayed significantly lower plasma glucose concentrations in response to feeding and intraperitoneal administration of either glucose or insulin (p<0.05 to p<0.001). The (Pro3)GIP-treated group also exhibited significantly (p<0.05) reduced pancreatic insulin content. Acute administration of exendin(9-39)amide immediately prior to re-feeding completely annulled the beneficial effects of sub-chronic (Pro3)GIP treatment, but non-fasting concentrations of active GLP-1 were unchanged. Combined sub-chronic administration of (Pro3GIP) with exendin(9-39)amide revealed no beneficial effects. Similarly, daily administration of exendin(9-39)amide alone had no significant effects on any of the metabolic parameters measured. These studies highlight an important role for GIP in obesity-related forms of diabetes, suggesting the possible involvement of GLP-1 in the beneficial actions of GIP receptor antagonism.  相似文献   

6.
A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7) M native GIP, with an IC(50) value of 2.6 microM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P < 0.05 to P < 0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P < 0.001) and lower the glycemic excursion (1.5-fold decrease; P < 0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes.  相似文献   

7.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

8.
Recent research suggests that long-term ablation of gastric inhibitory polypeptide (GIP) receptor signalling can reverse or prevent many of the metabolic abnormalities associated with dietary and genetically induced obesity-diabetes. The present study was designed to assess the sub-chronic effects of passive or active immunisation against GIP in ob/ob mice. Initial acute administration of GIP antibody together with oral glucose in ob/ob mice significantly increased the glycaemic excursion compared to controls (p<0.05). This was associated with a significant reduction (p<0.05) in the overall glucose-mediated insulin response. However, sub-chronic passive GIP immunisation was not associated with any changes in body weight, food intake or metabolic control. In contrast, active immunisation against GIP for 56 days in young ob/ob mice resulted in significantly (p<0.05) reduced circulating plasma glucose concentrations on day 56 compared to controls. There was a tendency for decreased circulating insulin in GIP immunised mice. The glycaemic response to intraperitoneal glucose was correspondingly improved (p<0.05) in mice immunised against GIP. Glucose-stimulated insulin levels were not significantly different from controls. Furthermore, insulin sensitivity was similar in mice immunised against GIP and respective controls. Overall, the results reveal that active, as opposed to passive, immunisation against GIP improves blood glucose control ob/ob mice.  相似文献   

9.
Fatty acid derivatisation was used to develop two novel, long-acting, N-terminally modified, glucose-dependent insulinotropic polypeptide (GIP) analogues, N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37). In contrast to GIP, which was rapidly degraded by in vitro incubation with dipeptidylpeptidase IV (DPP IV) (52% intact after 2 h), the analogues remained fully intact for up to 24 h. Both fatty acid-derivatised analogues stimulated cAMP production in GIP receptor Chinese hamster lung (CHL) fibroblasts (EC50 12.1-13.0 nM) and significantly improved in vitro insulin secretion from BRIN-BD11 cells (1.1- to 2.4-fold; p < 0.05 to p < 0.001) compared to control (5.6 mM glucose). Administration of N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37) together with glucose in obese diabetic (ob/ob) mice significantly reduced the glycaemic excursion (1.4- and 1.5-fold, respectively; p < 0.05 to p < 0.01) and improved the insulinotropic response (1.5- and 2.3-fold, respectively; p < 0.01 to p < 0.001) compared to native peptide. Dose-response studies with N-AcGIP(LysPAL37) revealed that even the lowest concentration (6.25 nmol/kg) induced a highly significant decrease (1.4-fold; p < 0.001) in the overall glycaemic excursion, coupled with a significant increase (2.0-fold; p < 0.01) in circulating insulin. Furthermore, basal glucose values remained significantly reduced (p < 0.05) and insulin values increased 24 h following a single injection of N-AcGIP(LysPAL37). The glucose-lowering action of the fatty acid-derivatised peptide was greater than that of N-AcGIP. These data demonstrate that novel fatty acid-derivatised analogues of N-terminally modified AcGIP function as long-acting GIP-receptor agonists, with significant antidiabetic potential.  相似文献   

10.
Irwin N  Hunter K  Flatt PR 《Peptides》2007,28(11):2192-2198
Glucose-dependent insulinotropic polypeptide (GIP) and peptide YY (PYY) are secreted from the intestinal K- and L-cells, respectively, following a meal. Both peptides are believed to play a key role in glucose homeostasis and energy expenditure. This study investigated the effects of daily administration of the stable and specific GIP-R antagonist, (Pro(3))GIP (25 nmol/kg) and the endogenous truncated form of PYY, PYY(3-36) (50 nmol/kg), in mice fed with a high fat diet. Daily i.p. injection of (Pro(3))GIP, PYY(3-36) or combined peptide administration over 24 days significantly (P<0.05-0.01) decreased body weight compared with saline-treated controls without change in food intake. Plasma glucose levels and glucose tolerance were significantly (P<0.05) lowered by (Pro(3))GIP treatment alone, and in combination with PYY(3-36). These changes were accompanied by a slight improvement of insulin sensitivity in all of the treatment groups. (Pro(3))GIP treatment significantly reduced plasma corticosterone (P<0.05), while combined administration with PYY(3-36) significantly lowered serum glucagon (P<0.05). No appreciable changes were observed in either circulating or glucose-stimulated insulin secretion in all treatment groups. (Pro(3))GIP-treated mice had significantly (P<0.01) lowered fasting glucose levels and an improved (P<0.05) glycemic response to feeding. These comparative data indicate that chemical ablation of GIP receptor action using (Pro(3))GIP provides an especially effective means of countering obesity and related abnormalities induced by consumption of high fat energy rich diet.  相似文献   

11.

Background

Rapid enzymatic degradation of the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), limits therapeutic use of the native peptide for diabetes. However, enzymatically stable analogues of GIP, such as (d-Ala2)GIP, have been generated, but are still susceptible to renal filtration.

Methods

The present study examines the in vitro and in vivo biological actions of a novel, acylated GIP analogue, (d-Ala2)GIP[Lys37PAL].

Results

In BRIN-BD11 cells, (d-Ala2)GIP[Lys37PAL] concentration-dependently stimulated (p < 0.05 to p < 0.001) insulin secretion at 5.6 and 16.7 mM glucose. Intraperitoneal administration of (d-Ala2)GIP[Lys37PAL] to normal mice 8 h prior to a glucose load significantly reduced (p < 0.05) the overall glycaemic excursion compared to controls, and increased (p < 0.001) the insulinotropic response compared to (d-Ala2)GIP and saline treated high fat control mice. Once daily administration of (d-Ala2)GIP[Lys37PAL] for 21 days in high fat fed mice did not affect energy intake, body weight or fat deposition. However, circulating blood glucose was significantly lower (p < 0.05) accompanied by increased (p < 0.05) insulin concentrations by day 21. In addition, (d-Ala2)GIP[Lys37PAL] treatment significantly (p < 0.01) reduced the overall glycaemic excursion and increased pancreatic insulin content (p < 0.05) and the insulinotropic response (p < 0.01) to an exogenous glucose challenge on day 21. Chronic treatment with (d-Ala2)GIP[Lys37PAL] did not result in resistance to the metabolic effects of a bolus injection of native GIP. Finally, insulin sensitivity was significantly improved (p < 0.001) in (d-Ala2)GIP[Lys37PAL] treated mice compared to high fat controls.

Conclusions

These data confirm that (d-Ala2)GIP[Lys37PAL] is a stable, long-acting potent GIP agonist.

General significance

(d-Ala2)GIP[Lys37PAL] may be suitable for further evaluation and future clinical development.  相似文献   

12.
The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic insulin were restored to levels of chow-fed mice, and circulating triglyceride and cholesterol were significantly decreased. (Pro(3))GIP treatment also significantly decreased circulating glucagon and corticosterone, but concentrations of GLP-1, GIP, resistin, and adiponectin were unchanged. Adipose tissue mass, adipocyte hypertrophy, and deposition of triglyceride in liver and muscle were significantly decreased. These changes were accompanied by significant improvement of insulin sensitivity, meal tolerance, and normalization of glucose tolerance in (Pro(3))GIP-treated high-fat-fed mice. (Pro(3))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet.  相似文献   

13.
Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA2]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA2]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA2]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA2]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA2]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA2]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA2]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.  相似文献   

14.
Since the C-peptide/insulin ratio is reduced after oral glucose ingestion, the incretin hormone gastric inhibitory polypeptide (GIP) has been assumed to decrease hepatic insulin extraction. It was the aim of the present study to evaluate the effects of GIP on insulin extraction. Seventy-eight healthy subjects (27 male, 51 female, 43+/-11 years) were subjected to (a). an oral glucose tolerance test and (b). an intravenous injection of 20 pmol GIP/kg body weight, with capillary and venous blood samples collected over 30 min for insulin, C-peptide and GIP (specific immunoassays). Following GIP administration, plasma concentrations of total and intact GIP reached to peak levels of 80+/-7 and 54+/-5 pmol/l, respectively (p<0.0001). The rise in insulin after oral glucose and after intravenous GIP administration significantly exceeded the rise in C-peptide (p<0.0001). Estimating insulin extraction from the total integrated insulin and C-peptide concentrations (AUCs), only the oral glucose load (p<0.0001), but not the intravenous GIP administration (p=0.18) significantly reduced insulin clearance. Therefore, insulin clearance is reduced after an oral glucose load. This effect does not appear to be mediated by GIP.  相似文献   

15.
The effects of zinc supplementation (20 mM ZnCl2 from the drinking water for eight weeks) on plasma glucose and insulin levels, as well as its in vitro effect on lipogenesis and lipolysis in adipocytes were studied in genetically obese (ob/ob) mice and their lean controls (+/?). Zinc supplementation reduced the fasting plasma glucose levels in both obese and lean mice by 21 and 25%, respectively (p < 0.05). Fasting plasma insulin levels were significantly decreased by 42% in obese mice after zinc treatment. In obese mice, zinc supplementation also attenuated the glycemic response by 34% after the glucose load. The insulin-like effect of zinc on lipogenesis in adipocytes was significantly increased by 80% in lean mice. However, the increment of 74% on lipogenesis in obese mice was observed only when the zinc plus insulin treatment was given. This study reveals that zinc supplementation alleviated the hyperglycemia of ob/ob mice, which may be related to its effect on the enhancement of insulin activity.  相似文献   

16.
Cold acclimation is initially associated with shivering thermogenesis in skeletal muscle followed by adaptive non-shivering thermogenesis, particularly in brown adipose tissue (BAT). In response, hyperphagia occurs to meet increased metabolic demand and thermoregulation. The present study investigates the effects of cold (4 ± 1 °C) acclimation and hyperphagia on circulating and intestinal levels of gastric inhibitory polypeptide (GIP) in rats. Pair fed animals were used as additional controls in some experiments. Cold acclimation for 42 days significantly (p<0.01) increased daily food intake. There was no corresponding change in body weight. However, body weights of pair fed cold exposed rats were significantly (p<0.01) reduced compared to controls and ad libitum fed cold exposed rats. By day 42, non-fasting plasma glucose was increased (p<0.05) by chronic cold exposure regardless of food intake. Corresponding plasma insulin concentrations were significantly (p<0.01) lower in pair fed cold exposed rats. Circulating GIP levels were elevated (p<0.05) in ad libitum fed cold acclimated rats on days 18 and 24, but returned to normal levels by the end of the study. The glycaemic response to oral glucose was improved (p<0.01) in all cold exposed rats, with significantly (p<0.05) elevated GIP responses in ad libitum fed rats and significantly (p<0.05) reduced insulin responses in pair fed rats. In keeping with this, insulin sensitivity was enhanced (p<0.05) in cold exposed rats compared to controls. By the end of the study, cold acclimated rats had significantly (p<0.01) increased BAT mass and intestinal concentrations of GIP and GLP-1 compared to controls, independent of food intake. These data indicate that changes in the secretion and actions of GIP may be involved in the metabolic adaptations to cold acclimation in rats.  相似文献   

17.
Irwin N  Hunter K  Flatt PR 《Peptides》2008,29(6):1036-1041
GIP receptor antagonism with (Pro3)GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat diet. Furthermore, cannabinoid CB1 receptor antagonism with AM251 reduces appetite and body weight gain in mice. The present study has examined and compared the effects of chronic daily administrations of (Pro3)GIP (25 nmol/kg body weight), AM251 (6 mg/kg body weight) and a combination of both drugs in high-fat fed mice. Daily i.p. injection of (Pro3)GIP, AM251 or combined drug administration over 22 days significantly (P < 0.05 to <0.01) decreased body weight compared with saline-treated controls. This was associated with a significant (P < 0.05 to <0.01) reduction of food intake in mice treated with AM251. Plasma glucose levels and glucose tolerance were significantly (P < 0.05) lowered by 22 days (Pro3)GIP, AM251 or combined drug treatment. These changes were accompanied by a significant (P < 0.05) improvement of insulin sensitivity in all treatment groups. In contrast, AM251 lacked effects on glucose tolerance, metabolic response to feeding and insulin sensitivity in high-fat mice when administered acutely. These data indicate that chemical blockade of GIP- or CB1-receptor signaling using (Pro3)GIP or AM251, respectively provides an effective means of countering obesity and related abnormalities induced by consumption of high-fat energy-rich diet. AM251 lacks acute effects on glucose homeostasis and there was no evidence of a synergistic effect of combined treatment with (Pro3)GIP.  相似文献   

18.
X Z Khawaja  I C Green 《Peptides》1991,12(2):227-233
Intraperitoneal administration of beta-endorphin (1 mg/kg) to ob/ob mice doubled fasting plasma insulin concentrations within 30 min, while plasma glucose concentrations were unaltered. In lean mice, beta-endorphin failed to alter plasma insulin or glucose responses. In glucose-loaded ob/ob mice, beta-endorphin (1 mg/kg) reduced insulin levels at 40 min, and delayed glucose disposal. A lower dose of beta-endorphin (0.1 mg/kg) decreased plasma insulin at 90 min, with no effect on plasma glucose disposal. In lean mice, only the higher dose of beta-endorphin suppressed the glucose-stimulated rise in plasma insulin concentrations, without affecting plasma glucose. Beta-endorphin's actions were blocked by naltrexone and could not be mimicked by N-acetyl-beta-endorphin. Beta-endorphin (10(-8)M) enhanced insulin release from isolated ob/ob and lean mouse islets incubated in medium containing 6 mM glucose, but inhibited release when 20 mM glucose was present. These effects were naloxone reversible. The results indicate that 1) ob/ob mice display a greater magnitude of response in vivo to beta-endorphin's actions on insulin release compared with lean mice, 2) high concentrations of beta-endorphin exacerbate glucose disposal in ob/ob mice. 3) the prevailing glucose concentration is an important determinant of whether beta-endorphin's effects on insulin release will be stimulatory or inhibitory and 4) these actions are mediated via opiate receptors.  相似文献   

19.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are the two key incretin hormones released from the gastrointestinal tract that regulate blood glucose homeostasis through potent insulin secretion. The rapid degradation of GIP and GLP-1 by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) renders both peptides noninsulinotropic. However, DPP IV stable agonists, such as N-AcGIP and (Val8)GLP-1, have now been developed. The present study has examined and compared the metabolic effects of subchronic administration of daily i.p. injections of N-AcGIP, (Val8) GLP-1 and a combination of both peptides (all at 25 nmol/kg bw) in obese diabetic (ob/ob) mice. Initial in vitro experiments confirmed the potent insulinotropic properties of N-AcGIP and (Val8)GLP-1 in the clonal pancreatic BRIN BD11 cell line. Subchronic administration of N-AcGIP, (Val8)GLP-1 or combined peptide administration had no significant effects on the body weight, food intake and plasma insulin concentrations. However, all treatment groups had significantly (p < 0.05) decreased plasma glucose levels and improved glucose tolerance by day 14. The effectiveness of the peptide groups was similar, and glucose concentrations were substantially reduced following injection of insulin to assess insulin sensitivity compared to control. These results provide evidence for an improvement of glucose homeostasis following treatment with enzyme-resistant GIP and GLP-1 analogues.  相似文献   

20.
Synthetic fragment peptides of glucose-dependent insulinotropic polypeptide (GIP) were evaluated for their ability to elevate cellular cAMP production and stimulate insulin secretion. In GIP receptor transfected CHL cells, GIP(4–42) and GIP(17–30) dose-dependently inhibited GIP-stimulated cAMP production (40±8%; p<0.01 and 15±6%; p<0.05, respectively), while GIP(1–16) exerted very weak agonist effects on cAMP production. In the clonal pancreatic -cell line, BRIN-BD11, GIP(1–16) demonstrated weak insulin releasing activity compared with native GIP. In contrast, GIP(4–42) and GIP (17–30) weakly antagonized the insulin releasing activity of the native peptide (23±6%; p<0.05 and 11±3%, respectively). These data demonstrate the critical role of the N-terminus and the involvement of regions of the C-terminal domain in generating full biological potency of GIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号