首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S L Wong  R Ye    S Nathoo 《Applied microbiology》1994,60(2):517-523
Streptokinase is one of the major blood-clot-dissolving agents used in many medical treatments. With the cloned streptokinase gene (skc) available, production of the secreted streptokinase from various Bacillus subtilis strains was studied. The use of the six-extracellular-protease-deficient strain, WB600, greatly improved the production yield of the secreted streptokinase. A modified skc which has the original skc promoter and signal sequence replaced with the B. subtilis levansucrase promoter and signal sequence was also constructed. B. subtilis carrying either the wild-type or the modified skc produces streptokinase at a comparable level. Even with WB600 as the expression host, a C-terminally-processed streptokinase was also observed. Through region-specific combinatorial mutagenesis around the C-terminal processing sites, streptokinase derivatives resistant to C-terminal degradation were engineered. One of the derivatives showed a 2.5-fold increase in specific activity and would potentially be a better thrombolytic agent.  相似文献   

2.
A mutant strain of Bacillus subtilis carrying lesions in the structural genes for extracellular neutral (nprE) and serine (aprA) proteases was constructed by the gene conversion technique. This mutant had less than 4% of the extracellular protease activity of the wild type and sporulated normally, indicating that neither of these sporulation-associated proteases is essential for development.  相似文献   

3.
Bacillus subtilis strain FP-133, isolated from a fermented fish paste, synthesized two novel halotolerant extracellular proteases (expro-I and expro-II), showing activity and stability at concentrations of 0-20% (w/v) NaCl. Each protease was purified to homogeneity and characterized. The purified expro-I was a non-alkaline serine protease with an optimum pH of 7.5, although most serine proteases from Bacillus strains act at the alkaline side. The molecular mass of expro-I was 29 kDa. The purified expro-II was a metalloprotease with a molecular mass of 34 kDa. It was activated by Fe(2+), which has never been reported as a bacterial protease activator. At a concentration of 7.5% (w/v) NaCl, both proteases preferred animal proteins to vegetable proteins as natural substrates. In addition, under saline conditions, expro-I and II showed high catalytic activity toward gelatin and casein respectively.  相似文献   

4.
5.
Two mutants (NT02 and NT17), each producing a thermosensitive neutral protease, were isolated from Bacillus subtilis NP58, a transformant which acquired the property of hyperproduction of neutral protease from Bacillus natto IAM 1212. The neutral proteases produced by these two mutants were partially purified and enzymologically characterized. The two mutant neutral proteases displayed increased thermosensitivity as well as altered pH optima compared with those of the NP58 enzyme. In addition, the hydrolytic activity of the thermosensitive neutral proteases on synthetic peptide substrates was found to be extremely different. These results strongly suggest that the site of mutation in each of the temperature-sensitive strains is located within the structural gene for neutral protease (nprE). Previous studies indicated the existence of a specific regulator gene (nprR) in addition to the structural gene for neutral protease. Phage PBS1-mediated transduction and deoxyribonucleic acid-mediated transformation studies with the parental and mutant strains suggest that the chromosomal order of these genes is recA-pyrA-nprR-nprE-fruB-metC. Moreover, the results of these genetic analyses imply that the mutations to thermosensitivity are located proximate to each other within the nprE gene.  相似文献   

6.
Extracellular and membrane-bound proteases from Bacillus subtilis.   总被引:3,自引:5,他引:3       下载免费PDF全文
Bacillus subtilis YY88 synthesizes increased amounts of extracellular and membrane-bound proteases. More than 99% of the extracellular protease activity is accounted for by an alkaline serine protease and a neutral metalloprotease. An esterase having low protease activity accounts for less than 1% of the secreted protease. These enzymes were purified to homogeneity. Molecular weights of approximately 28,500 and 39,500 were determined for the alkaline and neutral proteases, respectively. The esterase had a molecular weight of approximately 35,000. Amino-terminal amino acid sequences were determined, and the actions of a number of inhibitors were examined. Membrane vesicles contained bound forms of alkaline and neutral proteases and a group of previously undetected proteases (M proteases). Membrane-bound proteases were extracted with Triton X-100. Membrane-bound alkaline and neutral proteases were indistinguishable from the extracellular enzymes by the criteria of molecular weight, immunoprecipitation, and sensitivity to inhibitors. The M protease fraction accounted for approximately 7% of the total activity in Triton X-100 extracts of membrane vesicles. The M protease fraction was partially fractionated into four species (M1 through M4) by ion-exchange chromatography. Immunoprecipitation and sensitivity to inhibitors distinguished membrane-bound alkaline and neutral proteases from M proteases. In contrast to alkaline and neutral proteases, proteases M2 and M3 exhibited exopeptidase activity.  相似文献   

7.
Gene encoding a minor extracellular protease in Bacillus subtilis.   总被引:5,自引:12,他引:5       下载免费PDF全文
A Sloma  A Ally  D Ally    J Pero 《Journal of bacteriology》1988,170(12):5557-5563
The gene for a minor, extracellular protease has been identified in Bacillus subtilis. The gene (epr) encoded a primary product of 645 amino acids that was partially homologous to both subtilisin (Apr) and the major internal serine protease (ISP-1) of B. subtilis. Deletion analysis indicated that the C-terminal 240 amino acids of Epr were not necessary for activity. This C-terminal region exhibited several unusual features, including a high abundance of lysine residues and the presence of a partially homologous sequence of 44 amino acids that was directly repeated five times. The epr gene mapped near sacA and was not required for growth or sporulation.  相似文献   

8.
The gene for a novel extracellular metalloprotease was cloned, and its nucleotide sequence was determined. The gene (mpr) encodes a primary product of 313 amino acids that has little similarity to other known Bacillus proteases. The amino acid sequence of the mature protease was preceded by a signal sequence of approximately 34 amino acids and a pro sequence of 58 amino acids. Four cysteine residues were found in the deduced amino acid sequence of the mature protein, indicating the possible presence of disulfide bonds. The mpr gene mapped in the cysA-aroI region of the chromosome and was not required for growth or sporulation.  相似文献   

9.
The rate of turnover of peptidoglycan in exponentially growing cultures of Bacillus subtilis was observed to be sensitive to extracellular protease. In protease-deficient mutants the rates of cell wall turnover were greater than that of wild-type strain 168, whereas hyperprotease-producing strains exhibited decreased rates of peptidoglycan turnover. The rate of peptidogylcan turnover in a protease-deficient strain was decreased when the mutant was grown in the presence of a hyperprotease-producing strain. The addition of phenylmethylsulfonyl fluoride, a serine protease inhibitor, to cultures of hyperprotease-producing strains increased their rates of cell wall turnover. Isolated cell walls of all protease mutants contained autolysin levels equal to or greater than that of wild-type strain 168. The presence of filaments, or cells with incomplete septa, was observed in hyperprotease-producing strains or when a protease-deficient strain was grown in the presence of subtilisin. The results suggest that the turnover of cell walls in B. subtilis may be regulated by extracellular proteases.  相似文献   

10.
11.
菌株Bacillus.subtilis.S3 68是以鸟苷生产菌株B .subtilis.A0 66为出发菌经诱变所得。对该菌株进行培养条件研究的过程中 ,发现该菌株可以在摇瓶纯培养条件下积累鸟苷。试验结果表明 :发酵过程中 ,腺嘌呤的用量 0 .3 5mg/ml时 ,发酵液中鸟苷积累量最大 ,培养基中腺嘌呤的用量高于或低于 0 .3 5mg/ml均不利于鸟苷产物的积累 ;培养基中味精、硫酸铵、硫酸镁、磷酸二氢钾及Mn2 +用量显著影响发酵液中鸟苷积累水平 ;培养基中生物素、蛋氨酸、精氨酸、组氨酸、氯化钙及Fe2 +、Zn2 +用量与鸟苷积累的相关性不显著  相似文献   

12.
Bacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system PtkA/PtpZ was previously shown to regulate the phosphorylation state of UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. This promiscuity towards substrates is reminiscent of eukaryal kinases and has prompted us to investigate possible physiological effects of ptkA and ptpZ gene inactivations in this study. We were unable to identify any striking phenotypes related to control of UDP-glucose dehydrogenases, natural competence and DNA lesion repair; however, a very strong phenotype of DeltaptkA emerged with respect to DNA replication and cell cycle control, as revealed by flow cytometry and fluorescent microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period.  相似文献   

13.
Intracellular serine proteinase was isolated from sporulating cells of Bacillus subtilis Marburg 168 by gramicidin S-Sepharose 4B affinity chromatography. The enzymological characteristics, the amino acid composition and the 19 residues of the N-terminal sequence of the enzyme are reported. The isolated proteinase was closely related to, but not completely identical with, the intracellular serine proteinase of B. subtilis A-50. The divergence between these two intracellular enzymes was less than that between the corresponding extracellular serine proteinases (subtilisins) of types Carlsberg and BPN', produced by these bacterial strains. This may be connected with the more strict selection constraints imposed in intracellular enzymes during evolution.  相似文献   

14.
15.
The pnpA gene of Bacillus subtilis, which codes for polynucleotide phosphorylase (PNPase), has been cloned and employed in the construction of pnpA deletion mutants. Growth defects of both B. subtilis and Escherichia coli PNPase-deficient strains were complemented with the cloned pnpA gene. RNA decay characteristics of the B. subtilis pnpA mutant were studied, including the in vivo decay of bulk mRNA and the in vitro decay of either poly(A) or total cellular RNA. The results showed that mRNA decay in the pnpA mutant is accomplished despite the absence of the major, Pi-dependent RNA decay activity of PNPase. In vitro experiments suggested that a previously identified, Mn2+ -dependent hydrolytic activity was important for decay in the pnpA mutant. In addition to a cold-sensitive-growth phenotype, the pnpA deletion mutant was found to be sensitive to growth in the presence of tetracycline, and this was due to an increased intracellular accumulation of the drug. The pnpA deletion strain also exhibited multiseptate, filamentous growth. It is hypothesized that defective processing of specific RNAs in the pnpA mutant results in these phenotypes.  相似文献   

16.
17.
Extracellular alpha-amylase was purified to homogeneity from a Marburg strain of Bacillus subtilis. The enzyme is a single polypeptide chain of molecular weight approximately 67,000. Its NH2-terminal amino acid sequence is Leu-Thr-Ala-Pro-Ser-Ile-Lys. A membrane-derived alpha-amylase was solubilizing from membrane vesicles by treatment with Triton X-100 and was highly purified by chromatography on an anti-alpha-amylase-protein A-Sepharose column. Membrane-derived alpha-amylase was indistinguishable from the soluble extracellular enzyme by sodium dodecyl sulfate-gel electrophoresis and radioimmunoassay. The membrane-derived enzyme contains phospholipid. Approximately 30 to 80% of the phospholipid was extracted from the purified enzyme by chloroform:methanol. The extracted phospholipid was predominately phosphatidylethanolamine. Treatment with phospholipase D released phosphatidic acid. Membrane-bound alpha-amylase was latent in membrane vesicles. Release of membrane-bound alpha-amylase from vesicles by an endogenous enzyme was maximal at pH 8.5, was inhibited by metal chelators and diisopropyl fluorophosphate and was stimulated by Ca2+ and Mg2+. The amount of membrane-bound alpha-amylase was related to the level of secretion.  相似文献   

18.
Bacillus subtilis CMK33 is a mutant that is more osmotically fragile than the wild type when it is converted to the protoplast form. The protoplasts of this mutant contain a membrane-bound lipase, which is not found in protoplasts of the wild type. Hydrolysis of the membrane lipid of mutant protoplasts by the lipase is the cause of their fragility. A protein found in the wild type organism specifically inhibits the lipase (Kent, C., and Lennarz, W. J. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 2793-2797). This paper reports that cultures of both mutant and wild type cells contain an extracellular lipase which accumulates during the logarithmic phase of growth. The extracellular activity appears to be induced by a component of the growth medium. The membrane-bound lipase of the mutant has been partially purified and its properties have been compared to those of the extracellular lipase of the wild type. Their properties and sensitivity to the wild type inhibitor are similar, which suggests that the two molecules are closely related. The subcellular location of the lipase in the mutant has been investigated and compared to the location of the membrane-bound portion of the lipase inhibitor in the wild type. The lipase is located almost exclusively in the cytoplasmic membrane and not in mesosomal vesicles. In contrast, the lipase inhibitor is located in both types of membranes and is more concentrated in mesosomal vesicles. Under appropriate conditions, the appearance of new extracellular lipase activity in mutant cultures is paralleled by the loss of an equivalent amount of lipase activity from protoplasts prepared from the cells. This suggests that the membrane-bound lipase may be an intermediate in the secretion of the extracellular lipase. Because of the mutation in B. subtilis CMK33, which results in the absence of the lipase inhibitor, this intermediate can be found in protoplasts of the mutant, although it is not detectable in the wild type. Consequently, the mutant may be useful in studies of the mechanism of secretion of exoenzymes by Bacilli.  相似文献   

19.
We cloned the genes encoding the two distinct extracellular halotolerant proteases of Bacillus subtilis FP-133 Expro-I and Expro-II, which were classified as alkaline serine and neutral proteases respectively. Three-dimensional modeling suggested that acidic and polar amino acid residues located on the surface stabilize protein structure in the presence of relatively high NaCl concentrations.  相似文献   

20.
A strain of Bacillus subtilis was able to grow and produce a biosurfactant on 2% sucrose at 45°C. As a result of biosurfactant synthesis the surface tension of the medium was reduced from 68 dynes cm−1 to 28 dynes cm−1. The strain had the capacity to produce the biosurfactant at high NaCl concentrations (4%) and a wide range of pH (4.5–10.5). The biosurfactant retained its surface-active properties after heating at 100°C for 2 h and at different pH values (4.5–10.5). A maximum amount of biosurfactant was produced when urea or nitrate ions were supplied as nitrogen source. The use of the biosurfactant at high temperatures, acidic, alkaline and saline environments is discussed. As a result of its action, 62% of oil in a sand pack column could be recovered, indicating its potential application in microbiologically enhanced oil recovery. Received 28 March 1996/ Accepted in revised form 16 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号