首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-component sensing system controlling bacterial chemotaxis is one of the best studied in biology. Rhodobacter sphaeroides has a complex chemosensory pathway comprising two histidine protein kinases (CheAs) and eight downstream response regulators (six CheYs and two CheBs) rather than the single copies of each as in Escherichia coli. We used in vitro analysis of phosphotransfer to start to determine why R.sphaeroides has these multiple homologues. CheA(1) and CheA(2) contain all the key motifs identified in the histidine protein kinase family, except for conservative substitutions (F-L and F-I) within the F box of CheA(2), and both are capable of ATP-dependent autophosphorylation. While the K(m) values for ATP of CheA(1) and CheA(2) were similar to that of E.coli, the k(cat) value was three times lower, but similar to that measured for the related Sinorhizobium meliloti CheA. However, the two CheAs differed both in their ability to phosphorylate the various response regulators and the rates of phosphotransfer. CheA(2) phosphorylated all of the CheYs and both CheBs, whilst CheA(1) did not phosphorylate either CheB and phosphorylated only the response regulators encoded within its own genetic locus (CheY(1), CheY(2), and CheY(5)) and CheY(3). The dephosphorylation rates of the R.sphaeroides CheBs were much slower than the E.coli CheB. The dephosphorylation rate of CheY(6), encoded by the third chemosensory locus, was ten times faster than that of the E.coli CheY. However, the dephosphorylation rates of the remaining R.sphaeroides CheYs were comparable to that of E.coli CheY.  相似文献   

2.
The Escherichia coli chemotaxis signal transduction pathway has: CheA, a histidine protein kinase; CheW, a linker between CheA and sensory proteins; CheY, the effector; and CheZ, a signal terminator. Rhodobacter sphaeroides has multiple copies of these proteins (2 x CheA, 3 x CheW and 3 x CheY, but no CheZ). In this study, we found a fourth cheY and expressed these R. sphaeroides proteins in E. coli. CheA2 (but not CheA1) restored swarming to an E. coli cheA mutant (RP9535). CheW3 (but not CheW2) restored swarming to a cheW mutant of E. coli (RP4606). R. sphaeroides CheYs did not affect E. coli lacking CheY, but restored swarming to a cheZ strain (RP1616), indicating that they can act as signal terminators in E. coli. An E. coli CheY, which is phosphorylated but cannot bind the motor (CheY109KR), was expressed in RP1616 but had no effect. Overexpression of CheA2, CheW2, CheW3, CheY1, CheY3 and CheY4 inhibited chemotaxis of wild-type E. coli (RP437) by increasing its smooth-swimming bias. While some R. sphaeroides proteins restore tumbling to smooth-swimming E. coli mutants, their activity is not controlled by the chemosensory receptors. R. sphaeroides possesses a phosphorelay cascade compatible with that of E. coli, but has additional incompatible homologues.  相似文献   

3.
Rhodobacter sphaeroides has a complex chemosensory system comprising two classic CheAs, two atypical CheAs, and eight response regulators (six CheYs and two CheBs). The classic CheAs, CheA(1) and CheA(2), have similar domain structures to Escherichia coli CheA, whereas the atypical CheAs, CheA(3) and CheA(4), lack some of the domains found in E. coli CheA. CheA(2), CheA(3), and CheA(4) are all essential for chemotaxis. Here we demonstrate that CheA(3) and CheA(4) are both unable to undergo ATP-dependent autophosphorylation, however, CheA(4) is able to phosphorylate CheA(3). The in vitro kinetics of this phosphorylation reaction were consistent with a reaction mechanism in which CheA(3) associates with a CheA(4) dimer forming a complex, CheA(3)A(4). To the best of our knowledge, CheA(3)A(4) is the first characterized histidine protein kinase where the subunits are encoded by distinct genes. Selective phosphotransfer was observed from CheA(3)-P to the response regulators CheY(1), CheY(6), and CheB(2). Using phosphorylation site and kinase domain mutants of CheA we show that phosphosignaling involving CheA(2), CheA(3), and CheA(4) is essential for chemotaxis in R. sphaeroides. Interestingly, CheA(3) was not phosphorylated in vitro by CheA(1) or CheA(2), although CheA(1) and CheA(2) mutants with defective kinase domains were phosphorylated by CheA(4). Because in vivo CheA(3) and CheA(4) localize to the cytoplasmic chemotaxis cluster, while CheA(2) localizes to the polar chemotaxis cluster, it is likely that the physical separation of CheA(2) and CheA(4) prevents unwanted cross-talk between these CheAs.  相似文献   

4.
Response regulator proteins of two-component systems are usually activated by phosphorylation. The phosphorylated response regulator protein CheY-P mediates the chemotaxis response in Escherichia coli. We performed random mutagenesis and selected CheY mutants that are constitutively active in the absence of phosphorylation. Although a single amino acid substitution can lead to constitutive activation, no single DNA base change can effect such a transition. Numerous different sets of mutations that activate in synergy were selected in several different combinations. These mutations were all located on the side of CheY defined by alpha4, beta5, alpha5, and alpha1. Our findings argue against the two-state hypothesis for response regulator activation. We propose an alternative intermolecular mechanism that involves a dynamic interplay between response regulators and their effector targets.  相似文献   

5.
Rhodobacter sphaeroides chemotaxis is significantly more complex than that of enteric bacteria. Rhodobacter sphaeroides has multiple copies of chemotaxis genes (two cheA, one cheB, two cheR, three cheW, five cheY but no cheZ), controlling a single 'stop-start' flagellum. The growth environment controls the level of expression of different groups of genes. Tethered cell analysis of mutants suggests that CheY(4) and CheY(5) are the motor-binding response regulators. The histidine protein kinase CheA(2) mediates an attractant ('normal') response via CheY(4), while CheA(1) and CheY(5) appear to mediate a repellent ('inverted') response. CheY(3) facilitates signal termination, possibly acting as a phosphate sink, although CheY(1) and CheY(2) can substitute. The normal and inverted responses may be initiated by separate sets of chemoreceptors with their relative strength dependent on growth conditions. Rhodobacter sphaeroides may use antagonistic responses through two chemosensory pathways, expressed at different levels in different environments, to maintain their position in a currently optimum environment. Complex chemotaxis systems are increasingly being identified and the strategy adopted by R.sphaeroides may be common in the bacterial kingdom.  相似文献   

6.
In contrast to the situation in enteric bacteria, chemotaxis in Rhodobacter sphaeroides requires transport and partial metabolism of chemoattractants. A chemotaxis operon has been identified containing homologues of the enteric cheA , cheW , cheR genes and two homologues of the cheY gene. However, mutations in these genes have only minor effects on chemotaxis. In enteric species, CheW transmits sensory information from the chemoreceptors to the histidine protein kinase, CheA. Expression of R. sphaeroides cheW in Escherichia coli showed concentration-dependent inhibition of wild-type behaviour, increasing counter-clockwise rotation and thus smooth swimming — a phenotype also seen when E. coli cheW is overexpressed in E. coli . In contrast, overexpression of R. sphaeroides cheW in wild-type R. sphaeroides inhibited motility completely, the equivalent of inducing tumbly motility in E. coli . Expression of R. sphaeroides cheW in an E. coli Δ cheW chemotaxis mutant complemented this mutation, confirming that CheW is involved in chemosensory signal transduction. However, unlike E. coli Δ cheW mutants, in-frame deletion of R. sphaeroides cheW did not affect either swimming behaviour or chemotaxis to weak organic acids, although the responses to sugars were enhanced. Therefore, although CheW may act as a signal-transduction protein in R. sphaeroides , it may have an unusual role in controlling the rotation of the flagellar motor. Furthermore, the ability of a Δ cheW mutant to swim normally and show wild-type responses to weak acids supports the existence of additional chemosensory signal-transduction pathways.  相似文献   

7.
A large chemotaxis operon was identified in Rhodobacter sphaeroides WS8-N using a probe based on the 3' terminal portion of the Rhizobium meliloti cheA gene. Two genes homologous to the enteric cheY were identified in an operon also containing cheA , cheW , and cheR homologues. The deduced protein sequences of che gene products were aligned with those from Escherichia coli and shown to be highly conserved. A mutant with an interrupted copy of cheA showed normal patterns of swimming, unlike the equivalent mutants in E. coli which are smooth swimming. Tethered cheA mutant cells showed normal responses to changes in organic acids, but increased, inverted responses to sugars. The unusual behaviour of the cheA mutant and the identification of two homologues of cheY suggests that R. sphaeroides has at least two pathways controlling motor activity. To identify functional similarity between the newly identified R. sphaeroides Che pathway and the methyl-accepting chemotaxis protein (MCP)-dependent pathway in enteric bacteria, the R. sphaeroides cheW gene was expressed in a cheW mutant strain of E. coli and found to complement, causing a partial return to a swarming phenotype. In addition, expression of the R. sphaeroides gene in wild-type E. coli resulted in the same increased tumbling and reduced swarming as seen when the native gene is over-expressed in E. coli . The identification of che homologues in R. sphaeroides and complementation by cheW suggests the presence of MCPs in an organism previously considered to use only MCP-independent sensing. The MCP-dependent pathway, appears conserved. In R. sphaeroides this pathway may mediate responses to sugars, while responses to organic acids may in involve a second system, possibly using the second CheY protein identified in this study.  相似文献   

8.
Vibrio cholerae has three sets of chemotaxis (Che) proteins, including three histidine kinases (CheA) and four response regulators (CheY) that are encoded by three che gene clusters. We deleted the cheY genes individually or in combination and found that only the cheY3 deletion impaired chemotaxis, reinforcing the previous conclusion that che cluster II is involved in chemotaxis. However, this does not exclude the involvement of the other clusters in chemotaxis. In other bacteria, phospho-CheY binds directly to the flagellar motor to modulate its rotation, and CheY overexpression, even without CheA, causes extremely biased swimming behavior. We reasoned that a V. cholerae CheY homolog, if it directly controls flagellar rotation, should also induce extreme swimming behavior when overproduced. This was the case for CheY3 (che cluster II). However, no other CheY homolog, including the putative CheY (CheY0) protein encoded outside the che clusters, affected swimming, demonstrating that these CheY homologs cannot act directly on the flagellar motor. CheY4 very slightly enhanced the spreading of an Escherichia coli cheZ mutant in semisolid agar, raising the possibility that it can affect chemotaxis by removing a phosphoryl group from CheY3. We also found that V. cholerae CheY3 and E. coli CheY are only partially exchangeable. Mutagenic analyses suggested that this may come from coevolution of the interacting pair of proteins, CheY and the motor protein FliM. Taken together, it is likely that the principal roles of che clusters I and III as well as cheY0 are to control functions other than chemotaxis.  相似文献   

9.
The six copies of the response regulator CheY from Rhodobacter sphaeroides bind to the switch protein FliM. Phosphorylation by acetyl phosphate (AcP) was detected by tryptophan fluorescence quenching in three of the four CheYs that contain this residue. Autophosphorylation with Ac(32)P was observed in five CheY proteins. We also show that all of the cheY genes are expressed simultaneously; therefore, in vivo all of the CheY proteins could bind to FliM to control the chemotactic response. Consequently, we hypothesize that in this complex chemotactic system, the binding of some CheY proteins to FliM, does not necessarily imply switching of the flagellar motor.  相似文献   

10.
CheY, a response regulator of the chemotaxis system in Escherichia coli, can be activated by either phosphorylation or acetylation to generate clockwise rotation of the flagellar motor. Both covalent modifications are involved in chemotaxis, but the function of the latter remains obscure. To understand why two different modifications apparently activate the same function of CheY, we studied the effect that each modification exerts on the other. The phosphodonors of CheY, the histidine kinase CheA and acetyl phosphate, each strongly inhibited both the autoacetylation of the acetylating enzyme, acetyl-CoA synthetase (Acs), and the acetylation of CheY. CheZ, the enzyme that enhances CheY dephosphorylation, had the opposite effect and enhanced Acs autoacetylation and CheY acetylation. These effects of the phosphodonors and CheZ were not caused by their respective activities. Rather, they were caused by their interactions with Acs and, possibly, with CheY. In addition, the presence of Acs elevated the phosphorylation levels of both CheA and CheY, and acetate repressed this stimulation. These observations suggest that CheY phosphorylation and acetylation are linked and co-regulated. We propose that the physiological role of these mutual effects is at two levels: linking chemotaxis to the metabolic state of the cell, and serving as a tuning mechanism that compensates for cell-to-cell variations in the concentrations of CheA and CheZ.  相似文献   

11.
The motility and chemotaxis system are critical for the virulence of pathogenic leptospire, which enable them to penetrate host tissue barriers during infection. The completed genome sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroups Icterohaemorrhagiae (L. interrogans strain Lai) suggested that there were multiple copies of putative chemotaxis homologues located at its large chromosome. In order to verify the function of these proteins, the putative cheY genes were cloned into pQE31 vector and then expressed, respectively, in wild-type Escherichia coli strain RP437 and cheY defective strain RP5232. The results showed that all the five cheYs could restore the swarming of RP5232 strain to some extend. Overexpression of CheYs in RP437 showed inhibited swarming of RP437. To investigate the mechanism of chemotaxis signaling in L. interrogans strain Lai, certain aspartates (Asp-53, Asp-61, Asp-70, Asp-62, and Asp-66 for L. interrogans strain Lai CheY1, CheY2, CheY3, CheY4, and CheY5, respectively) were mutated. Expression of these mutated cheYs manifested neither restoration of the swarming ability of RP5232 nor inhibition on swarming ability of RP437. Multiple amino acid sequence alignment predicted ternary structures and the result of mutation experiment suggested that these conserved aspartate residues of L. interrogans were analogous to that in E. coli CheY in function and structure. So, L. interrogans and E. coli may have similar mechanisms of activation of the chemotaxis phosphorelay pathway, but there are differences in their control by signal terminator.  相似文献   

12.
The chemotactic responses of bacteria such as Escherichia coli and Salmonella typhimurium are mediated by phosphorylation of the CheY protein. Phospho-CheY interacts with the flagellar motor switch to cause tumbly behavior. CheY belongs to a large family of phosphorylated response regulators that function in bacteria to control motility and regulate gene expression. Residues corresponding to Asp57, Asp13, and Lys109 in CheY are highly conserved among all of these proteins. The site of phosphorylation in CheY is Asp57, and in the three-dimensional structure of CheY the Asp57 carboxylate side chain is in close proximity to the beta-carboxylate of Asp13 and the epsilon-amin of Lys109. To further examine the roles of these residues in response regulator function, each has been mutated to a conservative substitution. Asn for Asp and Arg for Lys. All mutations abolished CheY function in vivo. Whereas the Asp to Asn mutations dramatically reduced levels of CheY phosphorylation, the Lys to Arg mutation had the opposite effect. The high level of phosphorylation in the Lys109 mutant results from a decreased autophosphatase activity as well as a lack of phosphatase stimulation by the phosphatase activating protein, CheZ. Despite its high level of phosphorylation, the Lys109 mutant protein cannot produce tumbly behavior. Thus, Lys109 is required for an event subsequent to phosphorylation. We propose that an interaction between the epsilon-amino of Lys109 and the phosphoryl group at Asp57 is essential for the conformational switch that leads to activation of CheY.  相似文献   

13.
The signal transduction system that mediates bacterial chemotaxis allows cells to moduate their swimming behavior in response to fluctuations in chemical stimuli. Receptors at the cell surface receive information from the surroundings. Signals are then passed from the receptors to cytoplasmic chemotaxis components: CheA, CheW, CheZ, CheR, and CheB. These proteins function to regulate the level of phosphorylation of a response regulator designated CheY that interacts with the flagellar motor switch complex to control swimming behavior. The structure of CheY has been determined. Magnesium ion is essential for activity. The active site contains highly conserved Asp residues that are required for divalent metal ion binding and CheY phosphorylation. Another residue-at the active site, Lys109, is important in the phosphorylation-induced conformational change that facilitates communication with the switch complex and another chemotaxis component, CheZ. CheZ facilitates the dephosphorylation of phospho-CheY. Defects in CheY and CheZ can be suppressed by mutations in the flagellar switch complex. CheZ is thought to modulate the switch bias by varying the level of phospho-CheY. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti   总被引:7,自引:7,他引:0  
Cells of Rhizobium meliloti swim by the unidirectional, clockwise rotation of their right-handed helical flagella and respond to tactic stimuli by modulating the flagellar rotary speed. We have shown that wild-type cells respond to the addition of proline, a strong chemoattractant, by a sustained increase in free-swimming speed (chemokinesis). We have examined the role of two response regulators, CheY1 and CheY2, and of CheA autokinase in the chemotaxis and chemokinesis of R. meliloti by comparing wild-type and mutant strains that carry deletions in the corresponding genes. Swarm tests, capillary assays, and computerized motion analysis revealed that (i) CheY2 alone mediates 60 to 70% of wild-type taxis, whereas CheY1 alone mediates no taxis, but is needed for the full tactic response; (ii) CheY2 is the main response regulator directing chemokinesis and smooth swimming in response to attractant, whereas CheY1 contributes little to chemokinesis, but interferes with smooth swimming; (iii) in a CheY2-overproducing strain, flagellar rotary speed increases upon addition and decreases upon removal of attractant; (iv) both CheY2 and CheY1 require phosphorylation by CheA for activity. We conclude that addition of attractant causes inhibition of CheA kinase and removal causes activation, and that consequent production of CheY1-P and CheY2-P acts to slow the flagellar motor. The action of the chief regulator, CheY2-P, on flagellar rotation is modulated by CheY1, probably by competition for phosphate from CheA.  相似文献   

15.
Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.  相似文献   

16.
Rhodobacter sphaeroides is chemotactic to glutamate and most other amino acids. In Escherichia coli , chemotaxis involves a membrane-bound sensor that either binds the amino acid directly or interacts with the binding protein loaded with the amino acid. In R. sphaeroides , chemotaxis is thought to require both the uptake and the metabolism of the amino acid. Glutamate is accumulated by the cells via a binding protein-dependent system. To determine the role of the binding protein and transport in glutamate taxis, mutants were created by Tn 5 insertion mutagenesis and selected for growth in the presence of the toxic glutamine analogue γ-glutamyl-hydrazide. One of the mutants, R. sphaeroides MJ7, was defective in glutamate uptake but showed wild-type levels of binding protein. The mutant showed no chemotactic response to glutamate. Both glutamate uptake and chemotaxis were recovered when the gltP gene, coding for the H+-linked glutamate carrier of E. coli , was expressed in R. sphaeroides MJ7. It is concluded that the chemotactic response to glutamate strictly requires uptake of glutamate, supporting the view that intracellular metabolism is needed for chemotaxis in R. sphaeroides .  相似文献   

17.
Control of bacterial chemotaxis   总被引:8,自引:3,他引:5  
Bacterial chemotaxis, which has been extensively studied for three decades, is the most prominent model system for signal transduction in bacteria. Chemotaxis is achieved by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein, CheY. This protein is activated by a stimulus-dependent phosphorylation mediated by an autophosphorylatable kinase (CheA) whose activity is controlled by chemoreceptors. Upon phosphorylation, CheY dissociates from its kinase, binds to the switch at the base of the flagellar motor, and changes the motor rotation from the default direction (counter-clockwise) to clockwise. Phosphorylation may also be involved in terminating the response. Phosphorylated CheY binds to the phosphatase CheZ and modulates its oligomeric state and thereby its dephosphorylating activity. Thus CheY phosphorylation appears to be involved in controlling both the excitation and adaptation mechanisms of bacterial chemotaxis. Additional control sites might be involved in bacterial chemotaxis, e.g. lateral control at the receptor level, control at the motor level, or control by metabolites that link central metabolism with chemotaxis.  相似文献   

18.
It is well established that the response regulator of the chemotaxis system of Escherichia coli, CheY, can undergo acetylation at lysine residues 92 and 109 via a reaction mediated by acetyl-CoA synthetase (Acs). The outcome is activation of CheY, which results in increased clockwise rotation. Nevertheless, it has not been known whether CheY acetylation is involved in chemotaxis. To address this question, we examined the chemotactic behaviour of two mutants, one lacking the acetylating enzyme Acs, and the other having an arginine-for-lysine substitution at residue 92 of CheY - one of the acetylation sites. The Deltaacs mutant exhibited much reduced sensitivity to chemotactic stimuli (both attractants and repellents) in tethering assays and greatly reduced responses in ring-forming, plug and capillary assays. Likewise, the cheY(92KR) mutant had reduced sensitivity to repellents in tethering assays and a reduced response in capillary assays. However, its response to the addition or removal of attractants was normal. These observations suggest that Acs-mediated acetylation of CheY is involved in chemotaxis and that the acetylation site Lys-92 is only involved in the response to repellents. The observation that, in the cheY(92KR) mutant, the addition of a repellent was not chemotactically equivalent to the removal of an attractant also suggests that there are different signalling pathways for attractants and repellents in E. coli.  相似文献   

19.
Myxococcus xanthus moves on solid surfaces by using two gliding motility systems, A motility for individual-cell movement and S motility for coordinated group movements. The frz genes encode chemotaxis homologues that control the cellular reversal frequency of both motility systems. One of the components of the core Frz signal transduction pathway, FrzE, is homologous to both CheA and CheY from the enteric bacteria and is therefore a novel CheA-CheY fusion protein. In this study, we investigated the role of this fusion protein, in particular, the CheY domain (FrzECheY). FrzECheY retains all of the highly conserved residues of the CheY superfamily of response regulators, including Asp709, analogous to phosphoaccepting Asp57 of Escherichia coli CheY. While in-frame deletion of the entire frzE gene caused both motility systems to show a hyporeversal phenotype, in-frame deletion of the FrzECheY domain resulted in divergent phenotypes for the two motility systems: hyperreversals of the A-motility system and hyporeversals of the S-motility system. To further investigate the role of FrzECheY in A and S motility, point mutations were constructed such that the putative phosphoaccepting residue, Asp709, was changed from D to A (and was therefore never subject to phosphorylation) or E (possibly mimicking constitutive phosphorylation). The D709A mutant showed hyperreversals for both motilities, while the D709E mutant showed hyperreversals for A motility and hyporeversal for S motility. These results show that the FrzECheY domain plays a critical signaling role in coordinating A and S motility. On the basis of the phenotypic analyses of the frzE mutants generated in this study, a model is proposed for the divergent signal transduction through FrzE in controlling and coordinating A and S motility in M. xanthus.  相似文献   

20.
Stewart RC  VanBruggen R 《Biochemistry》2004,43(27):8766-8777
In the chemotaxis signal transduction pathway of Escherichia coli, the response regulator protein CheY is phosphorylated by the receptor-coupled protein kinase CheA. Previous studies of CheY phosphorylation and CheY interactions with other proteins in the chemotaxis pathway have exploited the fluorescence properties of Trp(58), located immediately adjacent to the phosphorylation site of CheY (Asp(57)). Such studies can be complicated by the intrinsic fluorescence and absorbance properties of CheA and other proteins of interest. To circumvent these difficulties, we generated a derivative of CheY carrying a covalently attached fluorescent label that serves as a sensitive reporter of phosphorylation and binding events and that absorbs and emits light at wavelengths well removed from potential interference by other proteins. This labeled version of CheY has the (dimethylamino)naphthalene fluorophore from Badan [6-bromoacetyl-2-(dimethylamino)naphthalene] attached to the thiol group of a cysteine introduced at position 17 of CheY by site-directed mutagenesis. Under phosphorylating conditions (or in the presence of beryllofluoride), the fluorescence emission of Badan-labeled CheY(M17C) exhibited an approximately 10 nm blue shift and an approximately 30% increase in signal intensity at 490 nm. The fluorescence of Badan-labeled CheY(M17C) also served as a sensitive reporter of CheY-CheA binding interactions, exhibiting an approximately 50% increase in emission intensity in the presence of saturating levels of CheA. Compared to wild-type CheY, Badan-labeled CheY exhibited reduced ability to autodephosphorylate and could not interact productively with the phosphatase CheZ. However, with respect to autophosphorylation and interactions with CheA, Badan-CheY performed identically to wild-type CheY, allowing us to explore CheA-CheY phosphotransfer kinetics and binding kinetics without interference from the fluorescence/absorbance properties of CheA and ATP. These results provide insights into CheY interactions with CheA, CheZ, and other components of the chemotaxis signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号