首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We have previously shown that oligodendrocyte progenitor cells exhibit developmental switching between alphav-associated beta integrin subunits to sequentially express alphavbeta1, alphavbeta3 and alphavbeta5 integrins during differentiation in vitro. To understand the role that alphavveta3 integrin may play in regulating oligodendrocyte progenitor cell behaviour, cells of the rat cell line, CG-4, were genetically engineered to constitutively express alphavbeta3 integrin by transfection with full-length human beta3 integrin subunit cDNA. Time-lapse videomicroscopy showed no effect of beta3 expression on cell migration but revealed enhanced proliferation on vitronectin substrata. Comparison of mitotic indices, as measured by 5-bromo-2'-deoxyuridine incorporation, confirmed that human beta3 integrin-expressing cells exhibited enhanced proliferation, as compared to both vector-only transfected, and wild-type CG-4 cells when switched to differentiation medium from growth medium, but only in cultures grown on vitronectin and not on poly-D-lysine. The effects on proliferation were inhibited by a function-blocking antibody specifically directed against the human beta3 integrin subunit. Human beta3 integrin-expressing cells also exhibited reduced differentiation. This differentiation could be reduced still further by a function-blocking monoclonal antibody against alphavbeta5 integrin, as could differentiation in the wild-type CG-4 cells. Taken together, these results suggest that alphavbeta3 integrin may regulate oligodendroglial cell proliferation and that both downregulation of alphavbeta3 integrin expression and signalling through alphavbeta5 integrin may be critical to continued differentiation in vitro.  相似文献   

2.
3.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. The stromal cell-derived factor 1 (SDF-1), constitutively secreted by human lung epithelium cells, has been shown to function in a key role for recruitment of neutrophils. Here, we found that human chondrosarcoma tissues and chondrosarcoma cell lines had significant expression of CXCR4 (SDF-1 receptor), which was higher than normal cartilage and human chondrocyte. SDF-1alpha and lung epithelium cells conditioned medium (LECM) induced the invasiveness of chondrosarcoma cells. SDF-1 siRNA inhibited LECM-induced invasion of chondrosarcoma cells and SDF-1alpha also directly induced the cell surface expression of alphavbeta3 but not alpha2beta1 and alpha5beta1 integrin. Activations of ERK and NF-kappaB pathways after SDF-1 treatment was demonstrated, and SDF-1alpha-induced expression of alphavbeta3 integrin and invasion activity was inhibited by the specific inhibitor and mutant of ERK and NF-kappaB cascades. Taken together, our results indicate that lung derived-SDF-1alpha enhances the invasiveness of chondrosarcoma cells by increasing alphavbeta3 integrin expression through the CXCR4/ERK/NF-kappaB signal transduction pathway.  相似文献   

4.
We have previously shown that hepatocyte growth factor (HGF) selectively increases the expression of integrin alpha(2) in Madin-Darby canine kidney (MDCK) cells. In this study, we have further investigated the signal transduction pathways responsible for the event and its role in HGF-induced cell scattering. We found that the level of integrin alpha(2)beta(1) expression induced by HGF correlated with the extent of cell scattering and that a functional blocking antibody against integrin alpha(2) at the concentration of 25 microg/ml partially (40%) inhibited the HGF-induced cell scattering. However, in the presence of the specific phosphatidylinositol 3-kinase inhibitor LY294002 or the selective Src family kinase inhibitor PP1, although cells retained their response to HGF for increasing integrin alpha(2) expression, they failed to scatter, indicating that increased expression of integrin alpha(2) alone is not sufficient for cell scattering. Moreover, epidermal growth factor, which induced a transient (1 h) activation of extracellular signal-regulated kinase (ERK) in MDCK cells, only slightly increased integrin alpha(2) expression and failed to trigger cell scattering. Conversely, HGF induced a sustained (at least 12 h) activation of ERK in the cells. Expression of constitutively active ERK kinase (MEK) in MDCK cells led to increased expression of integrin alpha(2) even in the absence of HGF stimulation. In contrast, expression of ERK phosphatase or dominant negative MEK inhibited HGF-induced integrin alpha(2) expression. Taken together, our results suggest that the increased expression of integrin alpha(2)beta(1) by HGF is at least partially required for cell scattering and that the duration of MEK/ERK activation is likely to be a crucial determinant for cells to activate integrin alpha(2) expression and cell scattering.  相似文献   

5.
Here we report that myeloid cells differentiating along the monocyte/macrophage lineage down-regulate the ST6Gal-I sialyltransferase via a protein kinase C/Ras/ERK signaling cascade. In consequence, the beta1 integrin subunit becomes hyposialylated, which stimulates the ligand binding activity of alpha5beta1 fibronectin receptors. Pharmacologic inhibitors of protein kinase C, Ras, and MEK, but not phosphoinositide 3-kinase, block ST6Gal-I down-regulation, integrin hyposialylation, and fibronectin binding. In contrast, constitutively active MEK stimulates these same events, indicating that ERK is both a necessary and sufficient activator of hyposialylation-dependent integrin activation. Consistent with the enhanced activity of hyposialylated cell surface integrins, purified alpha5beta1 receptors bind fibronectin more strongly upon enzymatic desialylation, an effect completely reversed by resialylation of these integrins with recombinant ST6Gal-I. Finally, we have mapped the N-glycosylation sites on the beta1 integrin to better understand the potential effects of differential sialylation on integrin structure/function. Notably, there are three N-glycosylated sites within the beta1 I-like domain, a region that plays a crucial role in ligand binding. Our collective results suggest that variant sialylation, induced by a specific signaling cascade, mediates the sustained increase in cell adhesiveness associated with monocytic differentiation.  相似文献   

6.
Altered expression of alphav integrins plays a critical role in tumor growth, invasion, and metastasis. In this study, we show that normal human epithelial ovarian cell line, HOSE, and ovarian cancer cell lines, OVCA 429, OVCA 433, and OVHS-1, expressed alphav integrin and associated beta1, beta3, and beta5 subunits, but only ovarian cancer cell lines OVCA 429 and OVCA 433 expressed alphavbeta6 integrin. The expression of alphavbeta6 in OVCA 429 and OVCA 433 was far higher than alphavbeta3 and alphavbeta5 integrin and correlated with high p42/p44 mitogen activated protein kinase (MAPK) activity and high secretion of high molecular weight urokinase plasminogen activator (HMW-uPA), pro-metalloproteinase 2 and 9 (pro-MMP-9 and pro-MMP-2). In contrast to HOSE and OVHS 1, OVCA 433 and OVCA 429 exhibited approximately 2-fold more plasminogen-dependent [3H]-collagen type IV degradation. Plasminogen-dependent [3H]-collagen IV degradation was inhibited by inhibitor of uPA (amiloride) and MMP (phenanthroline) and by antibodies against uPA or MMP-9 or alphavbeta6 integrin, indicating the involvement of alphavbeta6 integrin, uPA and MMP-9 in the process. The alphavbeta6 correlated increase in HMW-uPA and pro-MMP secretion could be inhibited by tyrosine kinase inhibitor genistein or the MEK 1 inhibitor U0126, consistent with a role of active p42/44 MAPK in the elevation of uPA, MMP-9, and MMP-2 secretion. Under similar conditions, genistein and U0126 inhibited plasminogen-dependent [3H]-collagen type IV degradation. These data suggest that sustained elevation of p42/44 MAPK activity may be required for the co-expression of alphavbeta6 integrin, which in turn may regulate the malignant potential of ovarian cancer cells via proteolytic mechanisms.  相似文献   

7.
8.
Recent evidence demonstrates that interactions between different integrins that are present on the cell surface can strongly influence the adhesive function of individual receptors. In this report, we show that Chinese hamster ovary cells that express the integrin alphavbeta3 in the absence of alpha5beta1 demonstrate increased adhesion and migration on fibrinogen. Furthermore, alphavbeta3-mediated adhesion to fibrinogen is not augmented by the soluble agonist, MnCl2, suggesting that alphavbeta3 exists in a higher affinity state in these cells. De novo expression of wild-type alpha5beta1 negatively regulates alphavbeta3-mediated adhesion and migration. This effect is not seen with expression of a chimeric alpha5beta1 integrin in which the cytoplasmic portion of the alpha5 integrin subunit is replaced by the cytoplasmic portion of the alpha4 integrin. In addition, it does not require ligation of alpha5beta1 by fibronectin. Cells that express a constitutively active beta3 integrin that contains a point mutation in the conserved membrane proximal region of the cytoplasmic tail, D723R, are resistant to the effect of alpha5beta1 expression. These data provide additional evidence of "cross-talk" between the integrins alpha5beta1 and alphavbeta3, and support the idea that alpha5beta1 regulates alphavbeta3-mediated ligand binding. This provides a relevant biological mechanism whereby variations in alpha5beta1 expression in vivo may modulate activation of alphavbeta3 to influence its adhesive function.  相似文献   

9.
Expression of an activated extracellular signal-regulated kinase 1 (ERK1) construct in yeast cells was used to examine the conservation of function among mitogen-activated protein (MAP) kinases. Sequence alignment of the human MAP kinase ERK1 with all Saccharomyces cerevisiae kinases reveals a particularly strong kinship with Kss1p (invasive growth promoting MAP kinase), Fus3p (pheromone response MAP/ERK kinase), and Mpk1p (cell wall remodeling MAP kinase). A fusion protein of constitutively active human MAP/ERK kinase 1 (MEK) and human ERK1 was introduced under regulated expression into yeast cells. The fusion protein (MEK/ERK) induced a filamentation response element promoter and led to a growth retardation effect concomitant with a morphological change resulting in elongated cells, bipolar budding, and multicell chains. Induction of filamentous growth was also observed for diploid cells following MEK/ERK expression in liquid culture. Neither haploids nor diploids, however, showed marked penetration of agar medium. These effects could be triggered by either moderate MEK/ERK expression at 37 degrees C or by high level MEK/ERK expression at 30 degrees C. The combination of high level MEK/ERK expression and 37 degrees C resulted in cell death. The deleterious effects of MEK/ERK expression and high temperature were significantly mitigated by 1 m sorbitol, which also enhanced the filamentous phenotype. MEK/ERK was able to constitutively activate a cell wall maintenance reporter gene, suggesting misregulation of this pathway. In contrast, MEK/ERK effectively blocked expression from a pheromone-responsive element promoter and inhibited mating. These results are consistent with MEK/ERK promoting filamentous growth and altering the cell wall through its ability to partially mimic Kss1p and stimulate a pathway normally controlled by Mpk1p, while appearing to inhibit the normal functioning of the structurally related yeast MAP kinase Fus3p.  相似文献   

10.
11.
Many cells express more than one integrin receptor for extracellular matrix, and in vivo these receptors may be simultaneously engaged. Ligation of one integrin may influence the behavior of others on the cell, a phenomenon we have called integrin crosstalk. Ligation of the integrin alphavbeta3 inhibits both phagocytosis and migration mediated by alpha5beta1 on the same cell, and the beta3 cytoplasmic tail is necessary and sufficient for this regulation of alpha5beta1. Ligation of alpha5beta1 activates the calcium- and calmodulin-dependent protein kinase II (CamKII). This activation is required for alpha5beta1-mediated phagocytosis and migration. Simultaneous ligation of alphavbeta3 or expression of a chimeric molecule with a free beta3 cytoplasmic tail prevents alpha5beta1-mediated activation of CamKII. Expression of a constitutively active CamKII restores alpha5beta1 functions blocked by alphavbeta3-initiated integrin crosstalk. Thus, alphavbeta3 inhibition of alpha5beta1 activation of CamKII is required for its role in integrin crosstalk. Structure-function analysis of the beta3 cytoplasmic tail demonstrates a requirement for Ser752 in beta3-mediated suppression of CamKII activation, while crosstalk is independent of Tyr747 and Tyr759, implicating Ser752, but not beta3 tyrosine phosphorylation in initiation of the alphavbeta3 signal for integrin crosstalk.  相似文献   

12.
Invasion of tumor cells is the primary cause of therapeutic failure in malignant chondrosarcomas treatment. Receptor activator of nuclear factor‐κB ligand (RANKL) and its receptor, RANK, play a key roles in osteoclastogenesis and tumor metastasis. We found that the RANKL and RANK expression in human chondrosarcoma tissues was higher than that in normal cartilage. We also found that RANKL directed the migration and increased cell surface expression of β1 integrin in human chondrosarcoma cells (JJ012 cells). Pretreatment of JJ012 cells with MAPK kinase (MEK) inhibitors, PD98059 or U0126, inhibited the RANKL‐induced migration and integrin expression. Stimulation of cells with RANKL increased the phosphorylation of MEK and extracellular signal‐regulating kinase (ERK). In addition, NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also inhibited RANKL‐induced cells migration and integrin up‐regulation. Taken together, these results suggest that the RANKL acts through MEK/ERK, which in turn activates IKKα/β and NF‐κB, resulting in the activation of β1 integrin and contributing to the migration of human chondrosarcoma cells. J. Cell. Biochem. 111: 138–147, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of alphavbeta3 integrin. Mice lacking uPAR (Plaur-/-) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active beta3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate alphavbeta3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of alphavbeta3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.  相似文献   

14.
Exogenous soluble human alpha3 noncollagenous (NC1) domain of collagen IV inhibits angiogenesis and tumor growth. These biological functions are attributed to the binding of alpha3NC1 to integrin alphavbeta3. However, in some tumor cells that express integrin alphavbeta3, the alpha3NC1 domain does not inhibit proliferation, suggesting that integrin alphavbeta3 expression is not sufficient to mediate the anti-tumorigenic activity of this domain. Therefore, in the present study, we searched for novel binding receptors for the soluble alpha3NC1 domain in cells lacking alphavbeta3 integrin. In these cells, soluble alpha3NC1 bound integrin alpha3beta1; however, unlike alphavbeta3, alpha3beta1 integrin did not mediate cell adhesion to immobilized alpha3NC1 domain. Interestingly, in cells lacking integrin alpha3beta1, adhesion to the alpha3NC1 domain was enhanced due to activation of integrin alphavbeta3. These findings indicate that integrin alpha3beta1 is a receptor for the alpha3NC1 domain and transdominantly inhibits integrin alphavbeta3 activation. Thus integrin alpha3beta1, in conjunction with integrin alphavbeta3, modulates cellular responses to the alpha3NC1 domain, which may be pivotal in the mechanism underpinning its anti-angiogenic and anti-tumorigenic activities.  相似文献   

15.
16.
The receptor activator of nuclear factor‐kappaB ligand (RANKL) and interleukin‐1beta are osteoclast activating factors which are abnormally expressed in bone marrow stromal cells and plasma cells of multiple myeloma patients. In this work we analyzed RANKL expression in human bone marrow mesenchymal stromal cells and the effect of the bisphosphonate ibandronate on RANKL expression after IL‐1beta activation of ERK pathway. Mesenchymal stromal cells were obtained from bone marrow iliac aspirates from multiple myeloma patients at stages II/III and non‐osteoporotics control donors; these cells were maintained under long‐term culture conditions. Cells were cultured in the presence or the absence of 5 ng/ml IL‐1beta and/or 5 µM ibandronate, during selected periods. mRNA for RANKL and protein levels were assayed by RT‐PCR and Western blot, respectively. Human bone marrow stromal cell line HS‐5 was used for assessing IL 1beta‐ and ibandronate‐ERK phosphorylation responses. Multiple myeloma mesenchymal stromal cells differentiate from control cells by increased basal RANKL expression. IL‐1beta up regulated RANKL expression showed dependent on activated MEK/ERK pathway. Finally, the bisphosphonate ibandronate, that hindered activation of the MEK/ERK pathway significantly inhibited both basal and IL‐1beta dependent RANKL expression by cells. Results indicate that RANKL expression involves the MEK/ERK pathway in multiple myeloma mesenchymal stromal cells, and that early obstruction of this path, such as that achieved with ibandronate, significantly deters RANKL protein expression. J. Cell. Biochem. 111: 130–137, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
Mn(2+) was found to induce adhesion of HT29-D4 adenoma carcinoma cells to fibrinogen (Fb). This was independent of the expression of the beta3 integrin subunit and involved endogenous alphavbeta6 but not alphavbeta5 integrin. Thus, addition of Mn(2+) led to a change in integrin alphavbeta6 specificity. Furthermore, Mn(2+) was found to strongly activate the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway in the HT29-D4 cell line. As a MAPK inhibitor strongly reduced the Mn(2+)-induced cell adhesion to Fb, it is suggested that a link between MAPK activation and cell adhesion to Fb exists. Both expression and activity of matrix metalloproteinase-9 (MMP-9) were enhanced by Mn(2+) and this led to Fb processing. MMP inhibitors prevented Mn(2+)-mediated cell adhesion to Fb, leading us to suggest that Mn(2+) promoted convergent changes in integrin alphavbeta6 conformation and Fb structure through activation of ERK/MAPK and MMP-9. Finally, we found that Mn(2+) and activators of the ERK pathway cooperated in HT29-D4 cell adhesion to Fb. Such a process may be involved in bone metastasis of some cancer cells.  相似文献   

20.
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号