首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The palate epithelium of the frog was examined by scanning electron microscopy, light microscopy and high speed cine micrography. The cilia remain stationary for much of the time in the end-of-effective stroke position. Each beat cycle begins with a forwardly-directed recovery stroke lasting about 60 ms, followed by an effective stroke towards the oesophagus lasting about 12 ms. Activity can often be correlated with the presence of mucus, which is carried as strands on the tips of the ciliary effective strokes whilst the recovery strokes move beneath the mucus. Coordination of ciliary activity was very variable; local antiplectic metachrony of the recovery strokes could almost always be seen, and on very active epithelia effective strokes were associated with approximately diaplectic waves (either to left or right), but any particular pattern of coordinated activity was transient and quickly transformed to another pattern. Beating and coordination of these short cilia were compared with those of cilia propelling water.  相似文献   

2.
The swimming behavior of many ciliate protozoans depends on graded changes in the direction of the ciliary effective stroke in response to depolarizing stimuli (i.e., the avoiding reaction of Paramecium). We investigated the problem of whether the directional response of cilia with a variable plane of beat is related to the polarity of the cell as a whole or to the orientation of the cortical structures themselves. To do this, we used a stock of Paramecium aurelia with part of the cortex reversed 180 degrees. We determined the relation of the orientation of the kineties (ciliary rows) to the direction of beat in these mosaic paramecia by cinemicrography of particle movements near living cells and by scanning electron microscopy of instantaneously fixed material. We found that the cilia of the inverted rows always beat in the direction opposite to that of normally oriented cilia during both forward and backward swimming. In addition, metachronal waves of ciliary coordination were present on the inverted patch, travelling in the direction opposite to those on the normal cortex. The reference point for the directional response of Paramecium cilia to stimuli thus resides within the cilia or their immediate cortical surroundings.  相似文献   

3.
Rapid freezing and substitution with fixative prior to scanning electron microscopy was used to demonstrate the pattern of beat and recovery of the cilia of free swimming miracidia of Fasciola hepatica. There were stages of dexioplectic metachronal co-ordination and the power stroke was approximately 15 degrees anticlockwise from the anterior-posterior axis. Around the circumference of the body of the miracidia there were approximately 12 metachronal waves of power and recovery. Free-swimming cercariae were recorded by time-lapse photography and, after conventional fixation, by scanning electron microscopy. Cercarial tail-beats were to the posterior of the body in the lateral plane at a rate of 8 Hz. The tail has paired lateral ridges positioned to act as leading edges. There is an array of 32 sensory papillae on the mid-ventral surface of the tail. The tegument of the most distal part of the tail is described: it is free of sensory endings and the surface shows a spiral pattern.  相似文献   

4.
This paper describes the fine structure and its relationship to the direction of beat in four types of cilia on the gill of the fresh-water mussel Anodonta cataracta. The cilia contain nine outer, nine secondary, and two central fibers, such as have been described previously in other material. Each outer fiber is a doublet with one subfiber bearing arms. One particular pair of outer fibers (numbers 5 and 6) are joined together by a bridge. The two central fibers are enclosed by a central sheath; also present in this region is a single, small mid-fiber. The different groups of fibers are connected together by radial links that extend from the outer to the secondary fibers, and from the secondary fibers to the central sheath. The basal body consists of a cylinder of nine triplet fibers. Projecting from it on one side is a dense conical structure called the basal foot. The cylinder of outer fibers continues from the basal body into the cilium, passing through a complex transitional region in which five distinct changes of structure occur at different levels. There are two sets of fibers associated with the basal bodies: a pair of striated rootlets that extends from each basal body down into the cell, and a system of fine tubular fibers that runs parallel to the cell surface. The relationship between fine structure and direction of beat is the same in all four types of cilia examined. The plane of beat is perpendicular to the plane of the central fibers, with the effective stroke toward the bridge between outer fibers 5 and 6, and toward the foot on the basal body.  相似文献   

5.
Mucus propelling cilia are excitable by many stimulants, and have been shown to increase their beating frequency up to threefold, by physiological extracellular stimulants, such as adenosine-triphosphate, acetylcholine, and others. This is thought to represent the evolutionary adaptation of mucociliary systems to the need of rapid and efficient cleansing the airways of foreign particles. However, the mucus transport velocity depends not only on the beat frequency of the cilia, but on their beat pattern as well, especially in the case of mucus bearing cilia that beat in a complex, three-dimensional fashion. In this study, we directly measured the force applied by live ciliary tissues with an atomic force microscope, and found that it increases linearly with the beating frequency. This implies that the arc swept by the cilia during their effective stroke remains unchanged during frequency increase, thus leading to a linear dependence of transport velocity on the beat frequency. Combining the atomic force microscope measurements with optical measurements, we have indications that the recovery stroke is performed on a less inclined plane, leading to an effective shortening of the overall path traveled by the cilia tip during this nontransporting phase of their beat pattern. This effect is observed to be independent of the type of stimulant (temperature or chemical), chemical (adenosine-triphosphate or acetylcholine), or concentration (1 μM-100 μM), indicating that this behavior may result from internal details of the cilium mechanical structure.  相似文献   

6.
Two different theoretical models are used to represent the propulsive mechanisms of Opalina. One model uses the concept of an envelope over all the cilia, while the other considers an array of elongated rods, similar to the model used in part 1. The envelope model shows a correlation between the motion of the cilium tip and the type of metachronism exhibited by the organism but under-predicts the velocities of propulsion. Calculations of the velocity profile, force and bending moment are carried out on the three-dimensional beat of a cilium of Opalina ranarum using the cilia sublayer model. The mean velocity profile is found to be twisted in form: in a clockwise direction at the top of the cilia sublayer relative to the effective stroke. Calculations of the force and rate of working emphasize the approximately equal duration of the effective and recovery strokes. Overall the sublayer model is found to be a more informative and useful approach than the envelope model which is limited to small amplitude motions.  相似文献   

7.
The orientation and configuration of the central-pair microtubules in cilia were studied by serial thin-section analysis of "instantaneously fixed" paramecia. Cilia were frozen in various positions in metachronal waves by such a fixation. The spatial sequence of these positions across the wave represents the temporal sequence of the positions during the active beat cycle of a cilium. Systematic shifts of central- pair orientation across the wave indicate that the central pair rotates 360 degrees counterclockwise (viewed from outside) with each ciliary beat cycle (C. K. Omoto, 1979, Thesis, University of Wisconsin, Madison; C. K. Omoto and C. Kung, 1979, Nature [Lond.] 279:532-534). This is true even for paramecia with different directions of effective stroke as in forward- or backward-swimming cells. The systematic shifts of central-pair orientation cannot be seen in Ni++-paralyzed cells or sluggish mutants which do not have metachronal waves. Both serial thin- section and thick-section high-voltage electron microscopy show that whenever a twist in the central pair is seen, it is always left-handed. This twist is consistent with the hypothesis that the central pair continuously rotates counterclockwise with the rotation originating at the base of the cilium. That the rotation of the central pair is most likely with respect to the peripheral tubules as well as the cell surface is discussed. These results are incorporated into a model in which the central-pair complex is a component in the regulation of the mechanism needed for three-dimensional ciliary movement.  相似文献   

8.
Calculations of the velocity profile, force, moment and bending moment using a theoretical model are carried out for the three-dimensional “conical-helical” beat of a cilium of Paramecium multimicro-nucleatum. The mean velocity profile obtained by numerical computation is found to be twisted in form: it is inclined at a slight angle to the effective stroke at the top of the cilia sublayer, but twists around with the recovery stroke in the lower part of the sublayer. The force and moment are larger during the fast effective stroke, but over a complete cycle their contributions are approximately zero. Calculations on the bending moments reveals that they are larger during the recovery stage of the beating cycle.  相似文献   

9.
A mathematical model is proposed to explain the dependence of the direction and the length of the metachronal wave on parameters that characterize the ciliary beat, the dimensions of the cilia, and the geometry of their arrangement on the ciliated surface. The metachronal wave is decomposed into two mutually perpendicular components, which are chosen in such a way that the direction of one of them is in the direction of the effective stroke. The magnitudes of the two components are determined by using the concept of the time of delay between adjacent cilia. The properties of the metachronal wave are then calculated as a function of the ciliary parameters. The results obtained with the present model predict that the direction of the wave propagation is strongly dependent on the type of metachronism in the direction of the effective stoke and the polarization in time and in space of the ciliary beat. The metachronal wavelength is found to depend on four parameters: the ciliary length, the angle of the arc projected on the cell surface by the ciliary tip during the recovery stroke, the degree of asymmetry of ciliary beat, and the portion of the cycle occupied by the pause. The metachronal wavelength is also found to be only weakly dependent on the ciliary frequency. At this stage there exists relatively little experimental information with which to characterize fully the metachronal properties of ciliary systems. Even when only partial information exists, the model allows prediction, to within a certain range, of the direction of the wave propagation. It also suggests a possible mechanism for the influence of changes in environmental conditions on wave direction and wavelength. In several cases in which full information does exist, good agreement between the experimental findings and the predictions of the model is found. According to this model it will be worthwhile to invest more effort in measuring the time and space polarization of ciliary beating and times of delay between cilia.  相似文献   

10.
THE FINE STRUCTURE OF THE CILIA FROM CTENOPHORE SWIMMING-PLATES   总被引:1,自引:10,他引:1       下载免费PDF全文
The ctenophore swimming-plate has been examined with the electron microscope. It has been recognized as an association of long cilia in tight hexagonal packing. One of the directions of the hexagonal packing is parallel to the long edge of the swimming-plate and is perpendicular to the direction of the ciliary beat. All the cilia in the swimming-plate are identically oriented. The effective beat in the movement of the swimming-plate is directed towards the aboral pole of the animal, and this is also the side of the unpaired peripheral filament in all the cilia. The direction of the ciliary beat is fixed in relation to the position of the filaments of the cilia. The swimming-plate cilium differs from other types of cilia and flagella in having a filament arrangement that can be described as 9 + 3 as opposed to the conventional 9 + 2 pattern. The central filaments appear in a group of two "tubular" filaments and an associated compact filament. The compact filament might have a supporting function. It has been called "midfilament." Two of the peripheral nine filaments (Fig. 1, Nos. 3 and 8) are joined to the ciliary membrane by means of slender lamellae, which divide the cilium into two unequal compartments. These lamellae have been called "compartmenting lamellae." Some observations of the arrangement of the compartmenting lamelae indicate that they function by cementing the cilia together in lateral rows. The cilia of the rows meet at a short distance from each other, leaving a gap of 30 A only. The meeting points are close to the termini of the compartmenting ridges. An electron-dense substance is sometimes seen bridging the gap. Some irregularities are noted with regard to the arrangement of the compartmenting lamellae particularly at the peripheral rows of cilia. In many cilia in these rows there are small vesicles beneath the ciliary membrane.  相似文献   

11.
Membrane control of ciliary movement in ciliates   总被引:1,自引:0,他引:1  
Ciliary movement is generated in the axoneme by the unidirectional sliding of the outer doublets of microtubules produced by the adenosine triphosphate (ATP)-energized dynein arms. It is composed of an effective stroke phase and a passive recovery stroke phase. Two parameters are modulated to determine swimming characteristics of the cell (speed and direction): beat frequency; direction of the effective stroke. They are linked to the internal Ca++ level and to the membrane potential. The membrane governs the internal Ca++ level by regulating Ca++ influx and efflux. It contains voltage-sensitive Ca++ channels through which a passive Ca++ influx, driven by the electrochemical gradient, occurs during step depolarization. The rise of the Ca++ level, up to 6.10-7M triggers ciliary reversal and enhances beat frequency. Ca+ is extruded from cilia by active transport. Ca++ also activates a multistep enzymatic process, the first component of which is a membrane calmodulin-dependent guanylate cyclase. cGMP interacts with Ca++ to modulate the parameters of the ciliary beat. The phosphorylation-dephosphorylation cycle of axoneme and membrane proteins seems to play a major role in controlling ciliary movement. Hyperpolarization of the membrane enhances beat frequency by an unknown mechanism. It could be a modification of the ratio of axonemal bound Ca++ and Mg++, or activation by cyclic adenosine monophosphate (cAMP) produced by a membrane adenylate cyclase. The ciliary membrane behaves as a receptor able to detect modifications of external parameters, and as a transductor transmitting the detected signal by a second or third messengers toward the interior of the cilia. These messengers. acting at different levels, modulate the parameters of the mechanism that generates ciliary movement.  相似文献   

12.
SPAG6, an axoneme central apparatus protein, is essential for function of ependymal cell cilia and sperm flagella. A significant number of Spag6-deficient mice die with hydrocephalus, and surviving males are sterile because of sperm motility defects. In further exploring the ciliary dysfunction in Spag6-null mice, we discovered that cilia beat frequency was significantly reduced in tracheal epithelial cells, and that the beat was not synchronized. There was also a significant reduction in cilia density in both brain ependymal and trachea epithelial cells, and cilia arrays were disorganized. The orientation of basal feet, which determines the direction of axoneme orientation, was apparently random in Spag6-deficient mice, and there were reduced numbers of basal feet, consistent with reduced cilia density. The polarized epithelial cell morphology and distribution of intracellular mucin, α-tubulin, and the planar cell polarity protein, Vangl2, were lost in Spag6-deficient tracheal epithelial cells. Polarized epithelial cell morphology and polarized distribution of α-tubulin in tracheal epithelial cells was observed in one-week old wild-type mice, but not in the Spag6-deficient mice of the same age. Thus, the cilia and polarity defects appear prior to 7 days post-partum. These findings suggest that SPAG6 not only regulates cilia/flagellar motility, but that in its absence, ciliogenesis, axoneme orientation, and tracheal epithelial cell polarity are altered.  相似文献   

13.
In quail oviduct epithelium, as in all metazoan and protozoan ciliated cells, cilia beat in a coordinated cycle. They are arranged in a polarized pattern oriented according to the anteroposterior axis of the oviduct and are most likely responsible for transport of the ovum and egg white proteins from the infundibulum toward the uterus. Orientation of ciliary beating is related to that of the basal bodies, indicated by the location of the lateral basal foot, which points in the direction of the active stroke of ciliary beating. This arrangement of the ciliary cortex occurs as the ultimate step in ciliogenesis and following the oviduct development. Cilia first develop in a random orientation and reorient later, simultaneously with the development of the cortical cytoskeleton. In order to know when the final orientation of basal bodies and cilia is determined in the course of oviduct development, microsurgical reversal of a segment of the immature oviduct was performed. Then, after hormone-induced development and ciliogenesis, ciliary orientation was examined in the inverted segment and in normal parts of the ciliated epithelium. In the inverted segment, orientation was reversed, as shown by a video recording of the direction of effective flow produced by beating cilia, by the three-dimensional bending forms of cilia immobilized during the beating cycle and screened by scanning electron microscopy, and by the position of basal body appendages as seen in thin sections by transmission electron microscopy. These results demonstrate that basal body and ciliary orientation are irreversibly determined prior to development by an endogenous signal present early in the cells of the immature oviduct, transmitted to daughter cells during the proliferative phase and expressed at the end of ciliogenesis.  相似文献   

14.
The biflagellate alga Chlamydomonas reinhardi was studied with the light and electron microscopes to determine the behavior of flagella in the living cell and the structure of the basal apparatus of the flagella. During normal forward swimming the flagella beat synchronously in the same plane, as in the human swimmer's breast stroke. The form of beat is like that of cilia. Occasionally cells swim backward with the flagella undulating and trailing the cell. Thus the same flagellar apparatus produces two types of motion. The central pair of fibers of both flagella appear to lie in the same plane, which coincides with the plane of beat. The two basal bodies lie in a V configuration and are joined at the top by a striated fiber and at the bottom by two smaller fibers. From the area between the basal bodies four bands of microtubules, each containing four tubules, radiate in an X-shaped pattern, diverge, and pass under the cell membrane. Details of the complex arrangement of tubules near the basal bodies are described. It seems probable that the connecting fibers and the microtubules play structural roles and thereby maintain the alignment of the flagellar apparatus. The relation of striated fibers and microtubules to cilia and flagella is reviewed, particularly in phytoflagellates and protozoa. Structures observed in the transitional region between the basal body and flagellar shaft are described and their occurrence is reviewed. Details of structure of the flagellar shaft and flagellar tip are described, and the latter is reviewed in detail.  相似文献   

15.
This study confirms and extends previous work on the lateral cilia of the fresh-water mussel, Elliptio complanatus, in support of a "sliding filament" mechanism of ciliary motility wherein peripheral filaments (microtubules) do not change length during beat (see Satir, 1967). Short sequences of serial sections of tips are examined in control (nonbeating) and activated (metachronal wave) preparations. Several different tip types, functional rather than morphogenetic variants, are demonstrated, but similarly bent cilia have similar tips. The peripheral filaments are composed of two subfibers: a and b. The bent regions of cilia are in the form of circular arcs, and apparent differences in subfiber-b length at the tip are those predicted solely by geometry of the stroke without the necessity of assuming filament contraction. Various subfibers b apparently move with respect to one another during beat, since small systematic variations in relative position can be detected from cilium to cilium. While subfiber-b lengths are uniform throughout, subfiber-a lengths are morphologically different for each filament: 8 and 3 are about 0.8 µ longer than 1, 4 and 5, but each unique length is independent of stroke position or tip type. Subfiber-a does not contract, nor does it move, e.g. slide, with respect to subfiber-b of the same doublet. The central pair of filaments extends to the tip of the cilium where its members fuse. Subunit assembly in ciliary microtubules is evidently precise. This may be of importance in establishing the relationships needed for mechanochemical interactions that produce sliding and beat.  相似文献   

16.
Upon excision into spring water, the lateral cilia of the gill of the freshwater mussel Elliptio complanatus (Solander) stop beating, but 0.04 M potassium ion can activate the gill so that these cilia again beat with metachronal rhythm. One per cent osmium tetroxide quickly pipetted onto a fully activated gill fixes the lateral cilia in a pattern that preserves the form and arrangement of the metachronal wave, and permits the cilia to be studied with the electron microscope in all stages of their beat cycle. Changes are seen in the fixed active preparation that are not present in the inactive control, i.e., in the packing of the cilia, the position of the axis of the ciliary cross-section, and the diameter of the ring of peripheral filaments. Analysis of these parameters may lead to new correlations between ciliary fine structure and function.  相似文献   

17.
Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.  相似文献   

18.
Using a "slit camera" recording technique, we have examined the effects of local laser irradiation of cilia of the gill epithelium of Mytilus edulis. The laser produces a lesion which interrupts epithelial integrity. In artificial sea water that contains high K+ or is effectively Ca++ free, metachronism of the lateral cilia continues to either side of the lesion with only minor perturbations in frequency synchronization and wave velocity, such as would be expected if metachronal wave coordination is mechanical. However, in normal sea water and other appropriate ionic conditions (i.e., where Ca++ concentration is elevated), in addition to local damage, the laser induces distinct arrest responses of the lateral cilia. Arrest is not mechanically coordinated, since cilia stop in sequence depending on stroke position as well as distance from the lesion. The velocity of arrest under standard conditions is about 3 mm/s, several orders of magnitude faster than spreading velocities associated with diffusion of materials from the injured region. Two responses can be distinguished on the basis of the kinetics of recovery of the arrested regions. These are (a) a nondecremental response that resembles spontaneous ciliary stoppage in the gills, and (b) a decremental response, where arrest nearer the stimulus point is much longer lasting. The slower recovery is often periodic, with a step size approximating lateral cell length. Arrest responses with altered kinetics also occur in laterofrontal cilia. The responses of Mytilus lateral cilia resemble the spreading ciliary arrest seen in Elliptio and arrest induced by electrical and other stimuli, and the decremental response may depend upon electrotonic spread of potential change produced at the stimulus site. If this were coupled to transient changes in Ca++ permeability of the cell membrane, a local rise in Ca++ concentration might inhibit ciliary beat at a sensitive point in the stroke cycle to produce the observed arrest.  相似文献   

19.
Latero-frontal, para-latero-frontal, and frontal ciliary tracts on the gill filaments of Crassostrea virginica (Gmelin) were studied with light microscopy and scanning electron microscopy. Latero-frontal cirri are complex structures composed of varying numbers of paired cilia. The multiple pairs of cilia which constitute a single cirrus are closely appressed for a portion of their length; they then branch laterally from the central axis in a plume-like fashion. Latero-frontal cirri of adjacent gill filaments create a filtration sieve which should be capable of retaining particles smaller than 1 μm in diameter. Para-latero-frontal cilia are short, closely spaced cilia arranged as a staggered row along the frontal side of each tract of latero-frontal cirri. Latero-frontal cirri and para-latero-frontal cilia occur on ordinary, principal, and transitional gill filaments. Frontal ciliary tracts of ordinary filaments are divided into a central, ventrally directed coarse tract, flanked on either side by a dorsally directed fine ciliary tract. The coarse tract is covered by cirri which are comprised of five to eight cilia, while the fine frontal tracts are made up of individually functioning cilia. The frontal ciliary tracts of principal and transitional filaments bear only dorsally directed fine cilia. The unique direction of effective beat of the coarse frontal cirri of ordinary filaments, in combination with the action of fine frontal cilia and the strategic location of mucus producing cells, is used to describe a possible mechanism for the sorting of filtered particles.  相似文献   

20.
Larvae of a brachiopod, Glottidia pyramidata, used at least two ciliary mechanisms to capture algal cells upstream from the lateral band of cilia that produces a feeding/swimming current. (1) Filtration: the larvae retained algal cells on the upstream (frontal) side of a sieve composed of a row of stationary laterofrontal cilia. Movement of the laterofrontal cilia could not be observed during capture or rejection of particles, but the laterofrontal cilia can bend toward the beating lateral cilia, a possible mechanism for releasing rejected particles from the ciliary sieve. (2) Localized changes of ciliary beat: the larvae may also concentrate particles by a local change in beat of lateral cilia in response to particles. The evidence is that the beat of lateral cilia changed coincident with captures of algal cells and that captured particles moved on paths consistent with a current redirected toward the frontal side of the tentacle by an induced local reversal of the lateral cilia. The change of beat of lateral cilia could have been an arrest rather than a reversal of ciliary beat, however. The similar ciliary bands in adult and larval lophophorates (brachiopods, phoronids, and bryozoans) suggest that these animals share a range of ciliary behaviours. The divergent accounts of ciliary feeding of lophophorates could be mostly the result of different authors observing different aspects of ciliary feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号