首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil seed banks play a major role in the post-fire regeneration of Mediterranean shrublands. They vary throughout the year in species composition, abundance, and readiness to germinate. After fire, germination occurs mainly during the following fall to spring. Time of germination can determine recruitment success. It is unclear what factors control post-fire germination and its timing. We tested the effects of season and fire on the readily germinable soil seed bank of a seeder-dominated shrubland. Plots were burned early and late in the summer season (ES, LS). Soil samples were collected before and after fire, and germinated in a chamber simulating successively autumn, winter, and spring conditions. Samples were kept moistened at all times. Fire intensity was similar between ES and LS. Several species of Cistus and herbs, mostly annuals, were dominant. Most germination occurred during the simulated-autumn period, with little subsequent germination during the following two periods. Germination speed (T 50) during simulated-autumn was similar for shrubs and herbs, and independent of season or fire. Germination was lower for two shrubs (Rosmarinus officinalis, Cistus salvifolius) and higher for herbaceous dicots in LS than in ES soils. Fire reduced monocots and enhanced Cistus. Germination period significantly interacted with fire and season in some groups or species, altering the simulated-autumn germination peak. We demonstrate that the seed bank can germinate swiftly under simulated-autumn conditions. Hence, water availability is the main controlling factor of germination. Fire season differentially affected some species or groups, and could affect the post-fire regeneration.  相似文献   

2.
Fire affects grassland composition by selectively influencing recruitment. Some exotic species can increase their abundance as a consequence of fire-stimulated seed germination, but response may depend on seed age. Rumex acetosella L. (Polygonaceae, sheep's sorrel) is a cosmopolitan herb that has invaded NW Patagonia's grasslands. This species forms persistent soil seed banks and increases after disturbances, particularly fire. We studied how fire and seed longevity influence R. acetosella germination. In 2008, we conducted laboratory experiments where we exposed different-aged seeds (up to 19 years old) to heat, smoke, charcoal, ash and control treatments. Total percentage germination and mean germination time depended on both seed age and fire treatment. Germination of younger seeds decreased with increasing temperature. There was no general pattern in germination responses of different-aged seeds to smoke, charcoal and ash. While smoke improved the germination of fresh seeds, charcoal decreased germination. Germination of untreated seeds was negatively correlated with seed age, and mean germination time increased with seed age. In most treatments, fresh seeds had lower germination than 1-5-year-old seeds, indicating an after-ripening requirement. Smoke stimulates R. acetosella germination, causing successful recruitment during post-fire conditions. Fresh seeds are particularly responsive to fire factors, possibly because they have not experienced physical degradation and are more receptive to environmental stimuli. Knowing the colonisation potential from the soil seed bank of this species during post-fire conditions will allow us to predict their impact on native communities.  相似文献   

3.
Abstract. Post-fire seed germination, seedling mortality and seed banks were investigated in scrub-heath (kwongan) in SW Australia. Study species included herbaceous and woody, obligate seeders and resprouters in two non-bradysporous but significant plant families (Restionaceae and Epacridaceae). In all species, seedlings were recruited only in the first autumn-spring after fire and occurred in similar densities as the estimated germinable annual seed input. Seedlings were absent from unburnt vegetation. Although most species retained some residual seeds after fire, tests (excised embryo culture) indicated that a negligible number of seeds were germinable. Regardless of fire response or species, there appeared to be a large loss of seeds each year and in most cases, only a small proportion of the annual seed production was used in post-fire recovery of plants. Based on seedling: parent ratios, all species had the capacity to reconstitute parent densities from germinants in the first year after fire, but high seedling mortality and no further recruitment resulted in less seedlings than replacements for four resprouter Restionaceae and three Epacridaceae (all obligate seeders) at the end of the third year after fire.  相似文献   

4.
Vegetative resprouting, soil or canopy-stored seed banks, post-fire seed dispersal and germination are the major strategies by which plants regenerate after fires. Post-fire regeneration modes of plants are commonly based on the presence or absence of post-fire recruitment as well as the presence or absence of post-fire resprouting. High temperatures, smoke and ash are characteristics of fire and the post-fire environment. We hypothesized that heat, smoke, ash and pH will have differential effects on seed germination depending on species’ post-fire regeneration strategies: serotinous vs. nonserotinous (which may have soil seed banks) and resprouters vs. nonresprouters (which may be obligate seeders). Here we examined the effects of these factors on the germination of 27 common east Australian species. Most serotinous species supported our hypothesis by showing no effect or reduced germination in response to heat. However, contrary to our prediction, all nonserotinous nonresprouting species also showed no effect or reduced germination in response to heat. Smoke, contrary to our hypothesis, had a negative or no effect on all serotinous and nonresprouting species, but no clear directional effect on serotinous and resprouting species. Supporting our hypotheses, ash and high pH showed positive or nonsignificant effects on the germination of all serotinous resprouting species, and a negative or no effect on nonserotinous resprouting species. However, contrary to our prediction, it had a negative or no effect on the serotinous nonresprouting species and no clear effect on nonserotinous nonresprouting species. We also discovered large differences in germination responses between conspecific populations that varied in their degree of resprouting. Although our data confirmed several of our predictions, the overall conclusion is that the responses of seeds to heat, smoke, ash and pH are not tightly associated with post-fire regeneration functional types. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Riparian ecosystems in South Africa's fynbos biome are heavily invaded by alien woody plants. Although large-scale clearing of these species is underway, the assumption that native vegetation will self-repair after clearing has not been thoroughly tested. Understanding the processes that mediate the recruitment of native species following clearing of invasive species is crucial for optimising restoration techniques.This study aimed to determine native species recovery patterns following implementation of different management interventions. We tested the influence of two clearing treatments (“fell & remove” and “fell & stack burn”) on the outcomes of passive restoration (natural recovery of native riparian species) and active restoration (seed sowing and planting of cuttings) along the Berg River in the Western Cape. Under greenhouse conditions we investigated seed viability and germination pre-treatments of selected native species.There was no recruitment of native species in sites that were not seeded (passive restoration sites), possibly because of the dominance of alien herbaceous species and graminoids or the lack of native species in the soil-stored seed bank. Germination of our targeted native species in the field was low in both “fell & remove” and “fell & stack burn” treatments. However, “fell & stack burn” gave better germination for the species Searsia angustifolia, Leonotis leonurus and Melianthus major. Seedling survival in the field was significantly reduced in summer, with drought stress being the main cause for seedling mortality. Germination rates in the greenhouse were high, an indication that harvested seeds were viable. Most seeds germinated without germination pre-treatments.We conclude that failure of native seeds to germinate under field conditions, secondary invasion of alien herbs and graminoids, the lack of native species in the soil-stored seed bank, and dry summer conditions hamper seedling establishment and recovery on sites cleared of dense stands of alien trees. For active restoration to achieve its goals, effective recruitment and propagation strategies need to be established.  相似文献   

6.
One strategy of plant survival during post-fire succession is to persist and regenerate by recruiting new individuals from a fire-resistant seed bank. The heat, smoke, and charcoal released during plant combustion may act (individually or in combination) as a cue for post-fire seed germination. Fabiana imbricata is a shrub that forms persistent seed banks in the northwestern Patagonian grasslands and shows a high recruitment from seeds during post-fire succession. Mathematical models showed that this species is advancing over the grasslands in response to fires. To corroborate these findings, we studied the role of fire on F. imbricata seed germination. In order to achieve this, a factorial experiment was designed in laboratory conditions to study the effect of heat, charcoal, smoke, scarification, and their interactions on F. imbricata seed germination. Seeds treated with the higher temperatures required a longer period of time to germinate, thus, significantly affecting the mean germination time. Total germination percentages in F. imbricata were significantly enhanced by smoke and scarification, but the interaction of heat, smoke, and scarification was more important than the effect of each fire factor alone. The positive response to fire cues exhibited by F. imbricata indicates that this species would have an adaptive advantage to colonize these grasslands if fire frequency increased, as predicted for this environment. Hence, fire will contribute to the grassland encroachment by this species and, therefore, to the loss of biodiversity and productivity of northwestern Patagonian grasslands.  相似文献   

7.
Hanley ME  Unna JE  Darvill B 《Oecologia》2003,134(1):18-22
Thermal shock is well known to be an important stimulus for the germination of soil-stored seeds in fire-prone plant communities. Nevertheless, while the overall germination response of different species is known to vary, the interaction between seed size and germination to a range of thermal-shock temperatures is poorly understood. This interaction may be important in regulating post-fire plant community establishment, since larger seeds are able to emerge from deeper within the soil profile than smaller seeds, and are therefore likely to be insulated against high above-ground temperatures by a deeper soil covering. In this experiment we examined how germination of eight co-occurring Western Australian fire-followers was influenced by thermal shock, and whether germination was significantly correlated with seed size. We found that small-seeded species not only showed enhanced germination at higher temperatures, but that their ability to germinate at higher temperatures was also greater than that displayed by larger-seeded species. These findings suggest that while seed size may be a useful general predictor of post-fire recruitment success, under different fire regimes the interaction between seed size, maximum seedling emergence depth, and the ability to withstand different thermal-shock temperatures is complex and may confound recent predictive models.  相似文献   

8.
The seed-bank dynamics of cerrado, a savanna-like vegetation type in central Brazil, was monitored for a year after a fire event in the mid-dry season. Fifty paired soil and litter samples were collected 1 day before and 1 day after the fire to record the immediate effects on the seed bank, and thereafter at monthly intervals to investigate the post-fire seed bank dynamics. The samples were hand-sorted and the intact seeds were classified as monocot or dicot and counted. All seeds underwent germination trials in a germination chamber for 1 month. Seeds that did not germinate were checked for the presence and viability of the embryo. The sorted soil samples were placed in a greenhouse for 6 months, and the count of emerging seedlings was added to the number of germinated and dormant seeds from the germination trials to estimate the total number of viable seeds per sample. The fire did not affect the total seed-bank density: 63 ± 8 seeds m?2 before the fire, and 83 ± 20 seeds m?2 (mean ± se) immediately after it. Although monocots represented 65 % of the pre-fire seed bank, 1 year after the fire, the monocot seed density did not reach the pre-fire value, whereas the density of dicot seeds increased threefold. After the fire, the viable seed density and species richness, decreased with the onset of the rainy season coinciding with germination in the field. Therefore, post-fire recruitment increases genetic variability and contributes to the persistence of plant populations in cerrado communities.  相似文献   

9.
BACKGROUND AND AIMS: Germination studies of species from fire-prone habitats are often focused on the role that fire plays in breaking dormancy. However, for some plant groups in these habitats, such as the genus Leucopogon (Ericaceae), dormancy of fresh seeds is not broken by fire cues. In the field, these same species display a flush of seedling emergence post-fire. Dormancy and germination mechanisms therefore appear complex and mostly unknown. This study aimed to identify these mechanisms by establishing dormancy class and testing the effects of a set of typical germination cues, including those directly related to fire and entirely independent of fire. METHODS: To classify dormancy, we assessed seed permeability and embryo morphology, and conducted germination experiments at seasonal temperatures in incubators. To test the effects of fire cues on germination, factorial combinations of smoke, heat and dark treatments were applied. Ageing treatments, using burial and seasonal incubation, were also tested. Germination phenology was established. KEY RESULTS: Seeds were dormant at release and had underdeveloped embryos. Primary dormancy of the study species was classified as morphophysiological. Seasonal temperature changes overcame primary dormancy and controlled timing of germination. Fire cues did not break primary dormancy, but there was a trend for smoke to enhance germination once this dormancy was overcome. CONCLUSIONS: Despite the fact that fire is a predominant disturbance and that many species display a flush of emergence post-fire, seasonal temperatures broke the primary physiological dormancy of the study species. It is important to distinguish between fire being responsible for breaking dormancy and solely having a role in enhancing levels of post-fire germination for seeds in which dormancy has been overcome by other factors. Biogeographical evidence suggests that morphological and physiological factors, and therefore seasonal temperatures, are likely to be important in controlling the dormancy and patterns of post-fire germination of many species in fire-prone regions.  相似文献   

10.
Abstract. Seed germination characteristics were investigated in the most common Cistus species in Greece, namely C. incanus ssp. creticus and C. salvifolius. In addition to the soft seed subpopulation, both species produce a large fraction of hardcoated, water-impermeable seeds which can be softened and, thus, promoted to germinate by mechanical scarification and thermal pretreatment. Temperature and light control of seed germination are unimportant. In the ecological context of the Mediterranean ecosystems, the eventually advantageous, opportunistic strategy of germination is based on: (a) seed heterospermy (which allows the smaller, softcoated fraction to germinate promptly each year while the majority of the seeds, the hard ones, accumulate in the soil); (b) the seed population heterogeneity in relation to coat hardness (so that any heat conditions produced by fire induce the softening and germination of a certain seed fraction); (c) the notably low germination rate (which suppresses premature germination); (d) the wide, Mediterranean-type (relatively cool), temperature range of germination (while higher temperatures simply inhibit but do not induce any dormancy); and (c) the apparent lack of photo-sensitivity (enabling germination under every light regime). In non-fire years, the temporal distribution of field germination and seedling appearance might be partly determined by the seed dispersal strategy of the individual Cistus species. Nevertheless, the post-fire regeneration response is manifested in the form of a huge wave of germination (of practically all seeds softened by the fire heat), shortly after the onset of the rainy season.  相似文献   

11.
The extreme species richness of native shrubland vegetation (kwongan) near Eneabba, Western Australia, presents a major problem in the restoration of sites following mineral sand mining. Seed sources available for post-mining restoration and those present in the native kwongan vegetation were quantified and compared. Canopy-borne seeds held in persistent woody fruits were the largest seed source of perennial species in the undisturbed native vegetation and also provided the most seeds for restoration. In undisturbed vegetation, the germinable soil seed store (140–174 seeds · m?2) was only slightly less than the canopy-borne seed store (234–494 seeds · m?2), but stockpiled topsoil provided only 9% of the germinable seeds applied to the post-mining habitat. The age of stockpiled soil was also important. In the three-year-old stockpiled topsoil, the seed bank was only 10.5 seeds · m?2 in the surface 2.5 cm, compared to 56.1 to 127.6 seeds · m?2 in fresh topsoil from undisturbed vegetation sites. In the stockpiled topsoil, most seeds were of annual species and 15–40% of the seeds were of non-native species. In the topsoil from undisturbed vegetation, over 80% of the seeds were of perennial species, and non-native species comprised only 2.7% of the seed bank. Additional seeds of native species were broadcast on restoration areas, and although this represented only 1% of the seed resources applied, the broadcast seed mix was an important resource for increasing post-mining species richness. Knowledge of the life-history characteristics of plant species may relate to seed germination patterns and assist in more accurate restoration where information on germination percentages of all species is not available.  相似文献   

12.
Ne'eman  Gidi  Izhaki  Ido 《Plant Ecology》1999,144(1):115-125
Soil samples from three microhabitats (gaps, beneath shrubs and beneath trees) in five stands of various post-fire ages (6–55 years) were collected in an east Mediterranean Aleppo pine Pinus halepensis forest. Total germinable seed bank densities varied between 300 and 1300 seeds per m2. Herbaceous taxa were the major constituents of the germinable seed bank in gaps, regardless of stand age. Perennials were the major components beneath shrubs in all stands except the youngest stand where herbaceous species were the major components in all microhabitats. Important tree and shrub species (e.g., Pinus halepensis, Quercus calliprinos, Pistacia lentiscus, Phillyrea latifolia) of the mature pine forest were not an important component of the soil seed bank and therefore, little resemblance was observed between the above-ground plant species composition and soil seed bank composition. This is consistent with the fact that these species regenerate by resprouting rather than by germination from the seed bank. Both microhabitats and forest-stands, which were of different ages, contributed to the variation in taxa richness, germinable seed density and diversity among samples. The effect of small-scale spatial heterogeneity (among microhabitats) was much more pronounced. In contrast to other studies, species richness, species diversity, and density of seed banks did not decrease with post-fire age. Moreover, stand age was a poor predictor for these attributes of the soil seed bank in an Aleppo pine forest. The heterogeneity plays an important role in conservation and management of this ecosystem.  相似文献   

13.
Abstract. Species native to the southwest of Western Australia, representing a range of plant families, life-history strategies, fire-response syndromes, seed-store types and seed weights, were tested for viability using tetrazolium chloride and for germination under combinations of constant temperatures of 15 °C or 23 °C, constantly dark or 12 h diurnal whitelight conditions, and with, or without, addition of gibberellic acid (GA3, 50 mg/l). Species previously known to require a heat-shock treatment to overcome dormancy due to an impervious testa were pre-treated prior to imposition of temperature, light and GA3 conditions. The test environmental conditions related to differences between winter and autumn temperatures and surface and buried seed germination positions of post-fire habitats. The viability of the selection of native Western Australian species ranged from 0 to 100 %, averaging 71 %. For all taxa, no combination of temperature, light and gibberellic acid treatment induced all viable seeds to germinate. The greatest percentage germination achieved in any combination of treatments averaged 71 % of all viable seeds for all species. Larger seeds (> 10 mg seed weight) tended to have greater viability percentages, but no overall patterns of viability or germinability were attributable to seed storage syndrome, strategy of fire recovery response or life-form type. Germination of most of the dominant tree representatives (Eucalyptus calophylla, E. diversicolor, E. erythrocorys, E. gomphocephala, and E. patens) was indifferent to the trial conditions of temperature, light and GA3. However, Eucalyptus marginata showed reduced germination in the light, which was overcome with GA3. GA3 also overcame the inhibition resulting from exposure to light in some understorey species (e.g. Allocasuarina campestris, Regelia ciliata, Xanthorrhoea gracilis and X. preissii). Germination of many hard-seeded, understorey shrub and herbaceous perennial species, especially those with small (< 10 mg) seeds (e.g. Bossiaea ornata, B. aquifolium and Acacia drummondii ssp. candolleana) was greater at the lower trial temperature and in the dark. Some large (> 10 mg) seeded, understorey species (e.g. Acacia extensa, Kennedia coccinea, K. prostrata, Hovea trisperma and Hardenbergia comptoniana) germinated in high percentages in both temperatures, but maximum germination percentages still tended to be at 15 °C. Large-seeded species were less sensitive to exposure to light compared to the smaller seeded species. The largest seeded species tested, Paraserianthes lophantha, germinated best in the warmer incubation temperature and in the light. The ecological significance of the tests would be that species which have seed dormancy mechanisms capable of delaying germination until the cool temperature, winter rainy period of this mediterranean-type climate would be more likely to survive than if germination followed summer rain showers or the first, intermittent rains of autumn. Burial of seeds becomes more important if germination occurs when rains first begin as this period has less available soil moisture and temperatures are high. Also survival of seedlings could be enhanced if germination of seed was restricted to the positions protected from high light, higher temperatures and lower soil moisture by the presence of a forest canopy. Therefore, seeds which have an ability to sense the presence of a previous fire in the habitat, conditions in light environment and appropriate temperature level have an adaptive advantage to time emergence to situations of time and space where survival is maximized. Variation in viability and germination percentages were apparent in some cases where more than one seed collection of available for testing, indicating that further aspects, such as seed age, maturity at collection, storage conditions and depth of seed dormancy, remain to be considered.  相似文献   

14.
The Santa Monica Mountains are home to many species of chaparral shrubs that provide vegetative cover and whose deep roots contribute to the stability of the steep slopes. Recently, native chaparral have been threatened by an unprecedented drought and frequent wildfires in Southern California. Besides the damage from the wildfires themselves, there is the potential for subsequent structural losses due to erosion and landslides. In this paper, we develop a mathematical model that predicts the impact of drought and frequent wildfires on chaparral plant community structure. We begin by classifying chaparral into two life history types based on their response to wildfires. Nonsprouters are completely killed by a fire, but their seeds germinate in response to fire cues. Facultative sprouters survive by resprouting but also rely on seed germination for post-fire recovery. The individual-based model presented here simulates the growth, seed dispersal, and resprouting behavior of individual shrubs across two life history types as they compete for space and resources in a rectangular domain. The model also incorporates varying annual rainfall and fire frequency as well as the competition between plants for scarce resources. The parameters were fit using seedling and resprout survivorship data as well as point quarter sampling data from 1986 to 2014 at a biological preserve within the natural landscape of the Malibu campus of Pepperdine University. The simulations from our model reproduce the change in plant community structure at our study site which includes the local extinction of the nonsprouter Ceanothus megacarpus due to shortened fire return intervals. Our simulations predict that a combination of extreme drought and frequent wildfires will drastically reduce the overall density of chaparral, increasing the likelihood of invasion by highly flammable exotic grasses. The simulations further predict that the majority of surviving shrubs will be facultative sprouting species such as Malosma laurina.  相似文献   

15.
Austrostipa compressa, a native ephemeral of southwest Western Australia was stimulated to germinate under a range of temperatures, in the presence of light, and exposure to smoke-water. This combination of environmental cues results in winter-maximum germination in immediate postfire and disturbed-soil environments of this Mediterranean-type climate. In contrast, Ehrharta calycina, an introduced perennial grass from southern Africa that has invaded Banksia woodlands, germinated under a wide range of temperature and light conditions, but showed no promotive response to smoke-water. Although A. compressa seeds tolerated heat shock better than E. calycina, the self-burial mechanism of A. compressa seeds ensures protection from fire. High-intensity fire could have a greater impact on E. calycina, as the seeds of this species tend to accumulate in the top of the soil profile where they are more susceptible to high temperatures. Although seeds of E. calycina are more susceptible to high temperatures, survival of mature individuals by postfire resprouting ensures continued survival in native woodlands. Estimates of soil seed bank densities showed extreme variability, but some recently burnt areas of the Yule Brook Botany Reserve contained up to 8000 seed m?2 of A. compressa and nearly 75 000 seeds m?2 of E. calycina. Viable soil seed bank densities of A. compressa are reduced with time-since-last fire, but areas of greater than 45 years since the last fire, still contained up to 119 seeds m?2. In both species, only about half their soil seed bank germinates following fire, thus ensuring the potential for later recruitment. Massive soil seed populations of E. calycina in native Banksia woodlands pose a major problem to management of this plant community type.  相似文献   

16.
Seed germination and life history syndromes in the California chaparral   总被引:1,自引:0,他引:1  
Syndromes are life history responses that are correlated to environmental regimes and are shared by a group of species (Stebbins, 1974). In the California chaparral there are two syndromes contrasted by the timing of seedling recruitment relative to wildfires. One syndrome, here called the fire-recruiter or refractory seed syndrome, includes species (both resprouting and non-resprouting) which share the feature that the timing of seedling establishment is specialized to the first rainy season after fire. Included are woody, suffrutescent and annual life forms but no geophytes have this syndrome. These species are linked by the characteristic that their seeds have a dormancy which is readily broken by environmental stimuli such as intense heat shock or chemicals leached from charred wood. Such seeds are referred to as “refractory” and dormancy, in some cases, is due to seed coat impermeability (such seeds are commonly called hardseeded), but in other cases the mechanism is unknown. Seeds of some may require cold stratification and/or light in addition to fire related stimuli. In the absence of fire related cues, a portion or all of a species’ seed pool remains dormant. Most have locally dispersed seeds that persist in the soil seed bank until the site burns. Dispersal of propagules is largely during spring and summer which facilitates the avoidance of flowering and fruiting during the summer and fall drought. Within a life form (e.g., shrub, suffrutescent, etc.), the seeds of these species have less mass than those of species with non-refractory seeds and this possibly reflects the environmental favorableness of the postfire environment for seedling establishment. Regardless of when fire occurs, germination is normally delayed until late winter or early spring. In the absence of fire, or other disturbance, opportunities for population expansion are largely lacking for species with this syndrome. The other syndrome, here called the fire-resister or non-refractory seed syndrome, includes species that are resilient to frequent fires (mostly by vegetative resprouting), but require fire-free periods for recruiting new seedlings. Included are shrubs, subshrubs, suffrutescents, lianas, geophytes and annuals. All are linked by the characteristic that their seeds germinate in the absence of cues related to wildfires. In many cases no form of seed dormancy is present and the seeds germinate soon after dispersal; consequently these species do not accumulate a persistent seed bank. Germination and seedling establishment is independent of fire and thus opportunities for population expansion are also independent of fire. The demographic pattern of seedling recruitment varies with the life form. For shrubs, seedling recruitment may be restricted to sites free of fire for periods of a hundred years or more. Recruitment appears to require relatively mesic conditions and this may account for the patchy distribution of these species within the matrix of relatively arid sites. Finding such sites has selected for propagules specialized for wind or animal dispersal; the majority are bird dispersed. These shrub species all disperse fruits in fall and winter and this may have been selected to take advantage of migratory birds as well as to time dispersal to the winter rains typical of the mediterranean-climate. Germination typically occurs within several weeks of the first fall or winter rains. Maturation of flowers and fruits during the summer and fall drought may account for the distribution of these species on more mesic sites. Seed mass of these species is large and this may have been selected to provide an advantage to seedlings establishing under the canopy of this dense shrub community.  相似文献   

17.
A simple and rapid bioassay was implemented to detect the germination activity of extracts from soils in pre/post-burn conditions. Soil samples taken from burnt, unburnt and adjacent plots at depths of 0–2, 2–4, 4–6 and 6–8 cm before and after burning mesic grassland in South Africa were analysed for germination activity over an eight-week period. Soil samples were extracted using dichloromethane and bioassayed using Grand Rapids lettuce (Lactuca sativa L.) achenes (seeds). The Grand Rapids lettuce seeds exhibited greater germination percentages when treated with extracts from burnt soil compared to the other plots. The magnitude of the germination activity declined with time since the burn. The Grand Rapids lettuce seeds also exhibited significantly higher germination when treated with unburnt soil extracts compared to the control (distilled water) which indicates the existence of other factors controlling germination in unburnt soil. Germination activity in the adjacent plots decreased with time. These findings indicate that the germination activity of the smoke derived from burning plant-material diffuses into the soil and its persistence declines with time. Considering that the soil seed bank contains viable seeds, at a moderate depth, and that they are initially unaffected by the heat of the fire, then smoke residues following a fire can influence the germination and recruitment of plant species that are responsive to smoke-derived compounds and are represented in the germinable soil seed bank.  相似文献   

18.
While understanding that seed germination is crucial for ecological restoration activities, the seed traits of desert perennials are understudied. We experimentally determined germination traits of 43 species from 14 families from Hummock grasslands in the Great Sandy Desert, Australia. We defined morphological and physiological seed traits of framework species required for restoration and investigated the effects of fire and temperature on seed germination. We classified dormancy and explored the effect of Karrikinolide, a fire cue derived from smoke, on germination. Seeds of 38 (88%) out of 43 species were dormant: 13 (30%) with physical and 25 (58%) with physiological dormancy. Karrikinolide promoted seed germination of 9 (21%) species across all life-forms except trees, and widened the range of germination temperatures and increased germination rate of one species. Although high germination percentages were obtained over a wide temperature range, germination rate was affected by temperature. Non-dormant seeds and seeds pre-treated to overcome physical dormancy germinated quickly, with times to 50% germination of 1–5 days. Dormancy class differed between life-forms and families. Fast germination of non-dormant seeds is a trait that allows seeds to germinate during short periods of moisture availability. An absence of under-developed embryos is consistent with the global trends for hot deserts. A response to Karrikinolide shows that seed germination is related to a fire cue. These results will inform land managers of effective seed pre-treatments prior to seed broadcasting for restoration, and information on seed germination temperatures and rates will improve the understanding of when and where seeds could germinate in restored sites.  相似文献   

19.
Arctic plant species are expected to lose range due to climate change. One approach to preserve the genetic and species diversity for the future is to store propagules in seed vaults. However, germinability of seeds is assumed to be low for Arctic species. We evaluated ex situ storage potential of 113 of the 161 native angiosperms of Svalbard by studying seed ripening and germination. Seeds or bulbils were collected, and germinability was tested after one winter of storage in the Svalbard Global Seed Vault. Twenty-six of the species did not produce ripe propagules, 8 produced bulbils, and 79 produced seeds. Bulbils sprouted to high percentages. Seeds of 10 species did not germinate, 22 had low germination (<20 %), 34 had germination of 21–70 %, and 13 had high germination percentages (>70 %). More than 70 % of the species belonging to Asteraceae, Brassicaceae, Caryophyllaceae, Juncaceae, Rosaceae, and Saxifragaceae germinated. Cold tolerant, common species had higher germination percentages than relatively thermophilous, rare species. Germination percentages were six times higher than observed in 1969 (n = 51) and 0.7 times that observed in 2008 (n = 22), indicating that recent climate warming improves germination in the Arctic. While in situ conservation is of vital importance, ex situ conservation in seed banks is a potential complementary conservation strategy for the majority of Arctic vascular plant species. For species that did not germinate, other methods for ex situ conservation should be sought, for example, growing in botanical gardens.  相似文献   

20.
The severity of fire impacts on fire-prone vegetation is often spatially heterogeneous, and may lead to small-scale patchiness in the structure of plant populations by affecting mortality, topkill, and reproduction. This patchiness, however, is not usually taken into account in fire ecology studies. We show that a dry-season fire may result in small-scale patchiness in the population structure of the common shrub Miconia albicans, mostly by differential topkill and resprouting. We related fire severity to population structure parameters of the study species and assessed the effects of fire on its soil seed bank. Basal area of non-woody live stems and of dead stems increased with fire severity, whereas that of woody live stems decreased, indicating topkill and resprouting. However, there was no relationship between fire severity and the total number of live or dead plants, showing that mortality in the fire was low. We found very few seedlings, indicating that resprouting, not germination from the soil seed bank, is the main recovery strategy of this species. The fire also affected the soil seed bank, as there were fewer seedlings emerging from soil collected in burned patches. Although this study was performed with a single species, it is likely that other species, especially those with basal resprouting, will show similar patterns of post-fire patchiness in population structure. This patchiness, in turn, may affect the spatial distribution of future fires, and should be taken into account in studies of fire ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号