首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

Breast cancer is the most common cause of cancer death in the western world. The expression differences of many proteins are associated with breast cancer progression or suppression. The purpose of the study was to determine the expression of nm23 protein in the invasion status and metastatic potential of breast cancer by using tissue microarray and to determine its role in breast cancer based on the expression of nm23 gene product.  相似文献   

2.
Expression of nm23-H1 gene product in thyroid,ovary, and breast cancers   总被引:1,自引:0,他引:1  
The nm23 gene product is one of several possible mediators of cancer invasion and metastasis. As the amounts of nm23-H1 mRNA and gene product are reduced in metastatic lymph nodes from patients with papillary carcinoma of the thyroid, we examined the expression of nm23 gene product in 115 thyroid cancers, 78 ovarian cancers, 63 breast cancers, and metastatic lymph node tissues by immunohistochemistry. It was found that nm23-H1, but not nm23-H2 gene product, was expressed in primary sites of thyroid, ovarian, and breast cancers, except for medullary and anaplastic carcinomas of the thyroid, but expressed only weakly or poorly in metastatic lymph nodes. Although nm23-H1 gene product expression was lower in anaplastic and medullary carcinomas of the thyroid, there was no significant difference in nm23-H1 gene product expression among histological types of ovarian and breast cancers. Our data indicate that the nm23-H1 gene product may play a role in metastasis in these hormone-producing organs and that other factors may be involved in metastasis of anaplastic and medullary carcinomas of the thyroid.  相似文献   

3.
MicroRNAs (miRNAs) have been shown to function as key regulators of tumor progression and metastasis. Recent studies have indicated that the miRNAs comprising the miR-23b/27b/24 cluster might influence tumor metastasis, although the precise nature of this regulation remains unclear. Here, expression of the miR-23b/27b/24 cluster is found to correlate with metastatic potential in mouse and human breast cancer cell lines and is elevated in metastatic lung lesions in human breast cancer patients. Ectopic expression of the miRNAs in the weakly metastatic mouse 4TO7 mammary tumor cell line had no effect on proliferation or morphology of tumor cells in vitro but was found to increase lung metastasis in a mouse model of breast cancer metastasis. Furthermore, gene expression profiling analysis of miRNA overexpressing 4TO7 cells revealed the direct targeting of prosaposin (PSAP), which encodes a secreted protein found to be inversely correlated with metastatic progression in human breast cancer patients. Importantly, ectopic expression of PSAP was able to suppress the metastatic phenotype in highly metastatic 4T1 and MDA-MB-231 SCP28 cells, as well as in cells ectopically expressing miR-23b/27b/24. These findings support a metastasis-promoting function of the miR-23b/27b/24 cluster of miRNAs, which functions in part through the direct inhibition of PSAP.  相似文献   

4.
Reduced expression of the nm23 gene in certain rodent model systems and human breast tumors has been correlated with high tumor metastatic potential. To investigate the functional effects of nm23 expression, we have transfected a constitutive murine nm23-1 expression construct into highly metastatic K-1735 TK murine melanoma cells. TK clones expressing the exogenous nm23-1 construct exhibited a reduced incidence of primary tumor formation, significant reductions in tumor metastatic potential independent of tumor cell growth, and altered responses to the cytokine transforming growth factor beta 1 in soft agar colonization assays, compared with control-transfected TK clones. In contrast, nm23-1-transfected TK clones exhibited no significant differences in intrinsic tumor cell growth, i.e., primary tumor size in vivo, anchorage-dependent growth rate in vitro, and anchorage-independent colony formation in soft agar in vitro. The data demonstrate a suppressive effect of nm23 on several aspects of the cancer process, including tumor metastasis.  相似文献   

5.
6.
为了更全面地了解nm23-H1在肺癌中发挥转移抑制的机理,用双向凝胶电泳技术比较人高转移大细胞肺癌细胞株(L9981)和转染nm23-H1基因的人大细胞肺癌细胞株(L9981-nm23-H1)间蛋白表达的差异.利用固相pH梯度双向凝胶电泳分离人高转移大细胞肺癌细胞株(L9981)和转染nm23-H1基因的人大细胞肺癌细胞株(L9981-nm23-H1)的总蛋白,用图像分析软件比较分析以识别细胞间的差异表达蛋白质.结果成功地获得了两株细胞蛋白组分辨率高、重复性好的双向凝胶电泳图谱.软件分析两种细胞的凝胶电泳图谱后发现,在相同分析条件下识别的蛋白质斑点数L9981为902±169个、L9981-nm23-H1为1160±212个.比较L9981和L9981-nm23-H1人大细胞肺癌细胞株的双向凝胶电泳蛋白质图谱后发现6个蛋白质点仅在L9981中有表达,17个蛋白质点仅在L9981-nm23-H1中有表达.此外,发现13个在两种细胞株中均存在,但表达量差异在2倍以上的蛋白质点(P<0.05).结果提示,nm23-H1基因转染引起人高转移大细胞肺癌细胞株蛋白质表达谱的变化,可能是其逆转肺癌侵袭转移的生物学基础.  相似文献   

7.
E-cadherin downregulation in cancer: fuel on the fire?   总被引:10,自引:0,他引:10  
The development, maintenance and repair of tissue requires an exquisite balance between cell proliferation, cell adhesion and cell motility. Equally, tumour initiation and progression are characterized by not only the abnormal expression of genes involved in cell proliferation and survival but also by genes responsible for the control of cell adhesion and cell motility. Central to the process of cell-cell adhesion in epithelial tissues is E-cadherin. Loss of E-cadherin function in tumours results in the rapid progression of relatively benign adenomas to invasive, metastatic carcinomas. Germline mutation of the E-cadherin gene predisposes to diffuse, poorly differentiated gastric cancer, and its downregulation in sporadic tumours is associated with poor clinical prognosis.  相似文献   

8.
9.
10.
Breast cancer metastasis is a major clinical problem. The molecular basis of breast cancer progression to metastasis remains poorly understood. PELP1 is an estrogen receptor (ER) coregulator that has been implicated as a proto-oncogene whose expression is deregulated in metastatic breast tumors and whose expression is retained in ER-negative tumors. We examined the mechanism and significance of PELP1-mediated signaling in ER-negative breast cancer progression using two ER-negative model cells (MDA-MB-231 and 4T1 cells) that stably express PELP1-shRNA. These model cells had reduced PELP1 expression (75% of endogenous levels) and exhibited less propensity to proliferate in growth assays in vitro. PELP1 downregulation substantially affected migration of ER-negative cells in Boyden chamber and invasion assays. Using mechanistic studies, we found that PELP1 modulated expression of several genes involved in the epithelial mesenchymal transition (EMT), including MMPs, SNAIL, TWIST, and ZEB. In addition, PELP1 knockdown reduced the in vivo metastatic potential of ER-negative breast cancer cells and significantly reduced lung metastatic nodules in a xenograft assay. These results implicate PELP1 as having a role in ER-negative breast cancer metastasis, reveal novel mechanism of coregulator regulation of metastasis via promoting cell motility/EMT by modulating expression of genes, and suggest PELP1 may be a potential therapeutic target for metastatic ER-negative breast cancer.  相似文献   

11.
PurposeThe molecular drivers of metastasis in breast cancer are not well understood. Therefore, we sought to identify the biological processes underlying distant progression and define a prognostic signature for metastatic potential in breast cancer.ResultsWe identified a broad range of metastatic potential that was independent of intrinsic breast cancer subtypes. 146 genes were significantly associated with metastasis progression and were linked to cancer-related biological functions, including cell migration/adhesion, Jak-STAT, TGF-beta, and Wnt signaling. These genes were used to develop a platform-independent gene expression signature (M-Sig), which was trained and subsequently validated on 5 independent cohorts totaling nearly 1800 breast cancer patients with all p-values < 0.005 and hazard ratios ranging from approximately 2.5 to 3. On multivariate analysis accounting for standard clinicopathologic prognostic variables, M-Sig remained the strongest prognostic factor for metastatic progression, with p-values < 0.001 and hazard ratios > 2 in three different cohorts.ConclusionM-Sig is strongly prognostic for metastatic progression, and may provide clinical utility in combination with treatment prediction tools to better guide patient care. In addition, the platform-independent nature of the signature makes it an excellent research tool as it can be directly applied onto existing, and future, datasets.  相似文献   

12.
13.
Although the role of miR-200s in regulating E-cadherin expression and epithelial-to-mesenchymal transition is well established, their influence on metastatic colonization remains controversial. Here we have used clinical and experimental models of breast cancer metastasis to discover a pro-metastatic role of miR-200s that goes beyond their regulation of E-cadherin and epithelial phenotype. Overexpression of miR-200s is associated with increased risk of metastasis in breast cancer and promotes metastatic colonization in mouse models, phenotypes that cannot be recapitulated by E-cadherin expression alone. Genomic and proteomic analyses revealed global shifts in gene expression upon miR-200 overexpression toward that of highly metastatic cells. miR-200s promote metastatic colonization partly through direct targeting of Sec23a, which mediates secretion of metastasis-suppressive proteins, including Igfbp4 and Tinagl1, as validated by functional and clinical correlation studies. Overall, these findings suggest a pleiotropic role of miR-200s in promoting metastatic colonization by influencing E-cadherin-dependent epithelial traits and Sec23a-mediated tumor cell secretome.  相似文献   

14.
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells.  相似文献   

15.
Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT-rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA-mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.  相似文献   

16.
From the pregnancy-dependent mouse mammary tumor TPDMT-4, four autonomous sublines were established after its independent progression under different conditions. Despite their similar growth rates in inguinal fat pads, three sublines formed lung metastases, and one did not when they were injected i.v. into mice as a single cell suspension. The TPDMT-4 tumor and the nonmetastatic subline expressed mRNA for the orf gene of mouse mammary tumor virus, whereas all metastatic sublines did not. This suggested that the loss of its expression may have been a prerequisite for the progression toward metastatic ability. To identify the gene(s) participating in the generation and the progression of TPDMT-4, the expression of 23 different oncogenes was analyzed. The expression of int-2 was detected in TPDMT-4 and in all sublines, indicating that TPDMT-4 was generated by activation of this gene, whereas hst expression occurred only in the metastatic sublines. These results demonstrated that the hst gene may contribute to tumor progression from a nonmetastatic to a metastatic phenotype in the mouse mammary tumor system.  相似文献   

17.
Breast cancer accounts for nearly half of all cancer-related deaths in women worldwide. However, the molecular mechanisms that lead to tumour development and progression remain poorly understood and there is a need to identify candidate genes associated with primary and metastatic breast cancer progression and prognosis. In this study, candidate genes associated with prognosis of primary and metastatic breast cancer were explored through a novel bioinformatics approach. Primary and metastatic breast cancer tissues and adjacent normal breast tissues were evaluated to identify biomarkers characteristic of primary and metastatic breast cancer. The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) dataset (ID: HS-01619) was downloaded using the mRNASeq platform. Genevestigator 8.3.2 was used to analyse TCGA-BRCA gene expression profiles between the sample groups and identify the differentially-expressed genes (DEGs) in each group. For each group, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to determine the function of DEGs. Networks of protein–protein interactions were constructed to identify the top hub genes with the highest degree of interaction. Additionally, the top hub genes were validated based on overall survival and immunohistochemistry using The Human Protein Atlas. Of the top 20 hub genes identified, four (KRT14, KIT, RAD51, and TTK) were considered as prognostic risk factors based on overall survival. KRT14 and KIT expression levels were upregulated while those of RAD51 and TTK were downregulated in patients with breast cancer. The four proposed candidate hub genes might aid in further understanding the molecular changes that distinguish primary breast tumours from metastatic tumours as well as help in developing novel therapeutics. Furthermore, they may serve as effective prognostic risk markers based on the strong correlation between their expression and patient overall survival.  相似文献   

18.
19.
The majority of breast cancer cases ultimately become unresponsive to endocrine therapies, and this progression of breast cancer from hormone-responsive to hormone-independent represents an area in need of further research. Additionally, hormone-independent carcinomas are characterized as being more aggressive and metastatic, key features of more advanced disease. Having previously shown the ability of the stromal-cell derived factor-1 (SDF-1)–CXCR4 signaling axis to promote primary tumorigenesis and hormone independence by overexpressing CXCR4 in MCF-7 cells, in this study we further examined the role of SDF-1/CXCR4 in the endogenously CXCR4-positive, estrogen receptor α (ER-α)-positive breast carcinoma cell line, MDA–MB-361. In addition to regulating estrogen-induced and hormone-independent tumor growth, CXCR4 signaling stimulated the epithelial-to-mesenchymal transition, evidenced by decreased CDH1 expression following SDF-1 treatment. Furthermore, inhibition of CXCR4 with the small molecule inhibitor AMD3100 induced CDH1 gene expression and inhibited CDH2 gene expression in MDA–MB-361 cells. Further, exogenous SDF-1 treatment induced ER-α-phosphorylation in both MDA–MB-361 and MCF-7–CXCR4 cells, demonstrating ligand-independent activation of ER-α through CXCR4 crosstalk. qPCR microRNA array analyses of the MDA–MB-361 and MCF-7–CXCR4 cell lines revealed changes in microRNA expression profiles induced by SDF-1, consistent with a more advanced disease phenotype and further supporting our hypothesis that the SDF-1/CXCR4 signaling axis drives ER-α-positive breast cancer cells to a hormone independent and more aggressive phenotype. In this first demonstration of SDF-1–CXCR4-induced microRNAs in breast cancer, we suggest that this signaling axis may promote tumorigenesis via microRNA regulation. These findings represent future potential therapeutic targets for the treatment of hormone-independent and endocrine-resistant breast cancer.  相似文献   

20.
Fluctuating oxygen levels characterize the microenvironment of many cancers and tumor hypoxia is associated with increased invasion and metastatic potential concomitant with a poor prognosis. Similarly, the expression of lysyl oxidase (LOX) in breast cancer facilitates tumor cell migration and is associated with estrogen receptor negative status and reduced patient survival. Here we demonstrate that hypoxia/reoxygenation drives poorly invasive breast cancer cells toward a more aggressive phenotype by up-regulating LOX expression and catalytic activity. Specifically, hypoxia markedly increased LOX protein expression; however, catalytic activity (beta-aminopropionitrile inhibitable hydrogen peroxide production) was significantly reduced under hypoxic conditions. Moreover, poorly invasive breast cancer cells displayed a marked increase in LOX-dependent FAK/Src activation and cell migration following hypoxia/reoxygenation, but not in response to hypoxia alone. Furthermore, LOX expression is only partially dependent on hypoxia inducible factor-1 (HIF-1alpha) in poorly invasive breast cancer cells, as hypoxia mimetics and overexpression of HIF-1alpha could not up-regulate LOX expression to the levels observed under hypoxia. Clinically, LOX expression positively correlates with tumor progression and co-localization with hypoxic regions (defined by HIF-1alpha expression) in ductal carcinoma in situ and invasive ductal carcinoma primary tumors. However, positive correlation is lost in metastatic tumors, suggesting that LOX expression is independent of a hypoxic environment at later stages of tumor progression. This work demonstrates that both hypoxia and reoxygenation are necessary for LOX catalytic activity which facilitates breast cancer cell migration through a hydrogen peroxide-mediated mechanism; thereby illuminating a potentially novel mechanism by which poorly invasive cancer cells can obtain metastatic competency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号