首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The virA and virG gene products are required for the regulation of the vir regulon on the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. VirA is a membrane-associated protein which is homologous to the sensor molecules of other two-component regulatory systems. We overproduced truncated VirA proteins in Escherichia coli by deleting different lengths of the 5'-coding region of the virA gene and placing these genes under lacZ control. These proteins were purified from polyacrylamide gels and renatured. The renatured proteins became radiolabeled when they were incubated with [gamma-32P]ATP but not with [gamma-32P]GTP or [alpha-32P]ATP, which suggests an ATP gamma-phosphate-specific autophosphorylation. The smallest VirA protein, which retained only the C-terminal half of the protein, gave the strongest autophosphorylation signal, which demonstrates that the C-terminal domain has the autophosphorylation site. The phosphorylated amino acid was identified as phosphohistidine, and a highly conserved histidine was found in all of the VirA homologs. When this histidine was changed to glutamine, which cannot be phosphorylated, the resulting VirA protein lost both its ability to autophosphorylate and its biological function as a vir gene regulator. Results of this study indicate that VirA autophosphorylation is required for the induction of the vir regulon and subsequent tumor induction on plants by A. tumefaciens.  相似文献   

3.
The VirA/VirG two-component regulatory system of Agrobacterium tumefaciens regulates expression of the virulence (vir) genes that control the infection process leading to crown gall tumor disease on susceptible plants. VirA, a membrane-bound homodimer, initiates vir gene induction by communicating the presence of molecular signals found at the site of a plant wound through phosphorylation of VirG. Inducing signals include phenols, monosaccharides, and acidic pH. While sugars are not essential for gene induction, their presence greatly increases vir gene expression when levels of the essential phenolic signal are low. Reception of the sugar signal depends on a direct interaction between ChvE, a sugar-binding protein, and VirA. Here we show that the sugar signal received in the periplasmic region of one subunit within a VirA heterodimer can enhance the kinase function of the second subunit. However, sugar enhancement of vir gene expression was vector dependent. virA alleles expressed from pSa-derived vectors inhibited signal transduction by endogenous VirA. Inhibition was conditional, depending on the induction medium and the virA allele tested. Moreover, constitutive expression of virG overcame the inhibitory effect of some but not all virA alleles, suggesting that there may be more than one inhibitory mechanism.  相似文献   

4.
The transconjugant CB100, harboring the Ti plasmid from the Agrobacterium tumefaciens biovar 2 strain D10B/87 in the chromosomal background of the biovar 1 strain C58, was defective in vir gene induction. This defect was corrected in the presence of virA from pTiA6. Based on this complementation result and an analysis of the induction requirements of the transconjugant CB100 and its parent strains, it was hypothesized that the defective vir gene induction in CB100 was related to a dysfunctional interaction between the pTi-encoded D10B/87 VirA and the chromosome-encoded C58 ChvE. To verify this hypothesis, D10B/87 and C58 virA were compared, and conclusions from this first set of analyses were then corroborated by comparing D10B/87 and C58 chvE. Whereas only a few nucleotide differences were identified in the promoters and 5' ends of the coding regions of D10B/87 and C58 virA, analysis of hybrid virA genes showed that these differences collectively accounted for the poor vir gene induction of strain CB100. In contrast with the sequence similarity of the VirA proteins, extensive divergence was seen between the chromosome-encoded D10B/87 and C58 ChvE. Although D10B/87 chvE introduced in trans had little effect on vir gene induction of CB100, it enhanced the induction response of a strain CB100 derivative in which the chromosomal C58 chvE had been inactivated by marker exchange. These results suggest that chromosomal backgrounds provided by different strains of A. tumefaciens are not equivalent for VirA function. Following conjugative transfer of certain Ti plasmids to a new agrobacterial host, evolution of the newly introduced virA, or coevolution of chvE and virA, may lead to optimization of ChvE-VirA interaction and vir gene induction levels.  相似文献   

5.
The transmembrane sensor protein VirA activates VirG in response to high levels of acetosyringone (AS). In order to respond to low levels of AS, VirA requires the periplasmic sugar-binding protein ChvE and monosaccharides released from plant wound sites. To better understand how VirA senses these inducers, the C58 virA gene was randomly mutagenized, and 14 mutants defective in vir gene induction and containing mutations which mapped to the input domain of VirA were isolated. Six mutants had single missense mutatiions in three widely separated areas of the periplasmic domain. Eight mutants had mutations in or near an amphipathic helix, TM1, or TM2. Four of the mutations in the periplasmic domain, when introduced into the corresponding A6 virA sequence, caused a specific defect in the vir gene response to glucose. This suggests that most of the periplasmic domain is required for the interaction with, or response to, ChvE. Three of the mutations from outside the periplasmic domain, one from each transmembrane domain and one from the amphiphathic helix, were made in A6 virA. These mutants were defective in the vir gene response to AS. These mutations did not affect the stability or topology of VirA or prevent dimerization; therefore, they may interfere with detection of AS or transmission of the signals to the kinase domain. Characterization of C58 chvE mutants revealed that, unlike A6 VirA, C58 VirA requires ChvE for activation of the vir genes.  相似文献   

6.
Agrobacterium tumefaciens Ag162 induces crown gall disease on an unusually narrow range of host plants. The 231-kilobase Ti plasmid which has been shown to determine host range, was subcloned into the vector pVCK102. By comparing overlaps of cloned insets, maps were constructed for the restriction endonucleases SalI, XhoI, EcoRI, and KpnI. Plasmid incompatibility, octopine catabolism, and at least six virulence genes were localized. Plasmid incompatibility between pTiAg162 and the wide host range plasmid pTiA6 consists of two components: mutual incompatibility and the apparent ability of pTiA6 to block RK2 replication if the pTiAg162 incompatibility locus is linked to the vector pVK102. The octopine catabolism locus maps within the 30 kilobases of DNA separating the two T-DNA regions of pTiAg162. Complementation of avirulent vir mutants of pTiA6 with clones of pTiAg162 DNA did not confer the host range of pTiAg162 but rather restored the wide host range of pTiA6. One potentially important difference between pTiA6 and pTiAg162 is that pTiAg162 T-DNA regions are widely separated.  相似文献   

7.
We have determined the complete nucleotide sequence of a 4.8 kilobase fragment encompassing the virA locus of the nopaline-type plasmid, pTiC58, of Agrobacterium tumefaciens. virA is composed of a single open reading frame of 2499 nucleotides, capable of encoding a protein of 91.3 kiloDaltons. A trpE::virA gene fusion was used to confirm the reading frame of virA. High nucleotide and amino acid sequence homologies were observed between pTiC58 virA and the virA sequences of three octopine-type plasmids. Strong homologies in amino acid sequence were observed between pTiC58 VirA and seven bacterial proteins which control various regulons. Two hydrophobic domains within VirA are also consistent with a model in which VirA acts as a membrane-bound sensor of plant signal molecules.  相似文献   

8.
9.
Hydroxylamine-induced mutations in the virA gene of Agrobacterium tumefaciens that do not require the plant phenolic-inducing compound acetosyringone for vir regulon induction were isolated. The isolation was based on the activation of both virB::lacZ and virE::cat fusions by mutant virA loci in the absence of acetosyringone. Three of these virA(Ais) (acetosyringone-independent signaling) mutants were characterized. All three mutants expressed a virB::lacZ fusion at high levels in the absence of acetosyringone. One virA (Ais) mutant, virA112, exhibited vir gene expression in the absence of inducing monosaccharides and acidic growth conditions, both of which are normally required for vir gene induction. The phenotype of the virA112 mutant resulted from a glycine to glutamic acid change near His-474, the site of VirA autophosphorylation.  相似文献   

10.
11.
12.
Although the majority of genes required for the transfer of T-DNA from Agrobacterium tumefaciens to plant nuclei are located on the Ti plasmid, some chromosomal genes, including the recently described acvB gene, are also required. We show that AcvB shows 50% identity with the product of an open reading frame, designated virJ, that is found between the virA and virB genes in the octopine-type Ti plasmid pTiA6. This reading frame is not found in the nopaline-type Ti plasmid pTiC58. acvB is required for tumorigenesis by a strain carrying a nopaline-type Ti plasmid, and virJ complements this nontumorigenic phenotype, indicating that the products of these genes have similar functions. A virJ-phoA fusion expressed enzymatically active alkaline phosphatase, indicating that VirJ is at least partially exported. virJ is induced in a VirA/VirG-dependent fashion by the vir gene inducer acetosyringone. Primer extension analysis and subcloning of the virJ-phoA fusion indicate that the acetosyringone-inducible promoter lies directly upstream of the virJ structural gene. Although the roles of the two homologous genes in tumorigenesis remain to be elucidated, strains lacking acvB and virJ (i) are proficient for induction of the vir regulon, (ii) are able to transfer their Ti plasmids by conjugation, and (iii) are resistant to plant wound extracts. Finally, mutations in these genes cannot be complemented extracellularly.  相似文献   

13.
Previous studies have shown that Agrobacterium tumefaciens causes tumors on plants only at temperatures below 32 degrees C, and virulence gene expression is specifically inhibited at temperatures above 32 degrees C. We show here that this effect persists even when the virA and virG loci are expressed under the control of a lac promoter whose activity is temperature independent. This finding suggests that one or more steps in the signal transduction process mediated by the VirA and VirG proteins are temperature sensitive. Both the autophosphorylation of VirA and the subsequent transfer of phosphate to VirG are shown to be sensitive to high temperatures (> 32 degrees C), and this correlates with the reduced vir gene expression observed at these temperatures. At temperatures of 32 degrees C and higher, the VirA molecule undergoes a reversible inactivation while the VirG molecule is not affected. vir gene induction is temperature sensitive in an acetosyringone-independent virA mutant background but not in a virG constitutive mutant which is virA and acetosyringone independent. These observations all support the notion that the VirA protein is responsible for the thermosensitivity of vir gene expression. However, an Agrobacterium strain containing a constitutive virG locus still cannot cause tumors on Kalanchoe plants at 32 degrees C. This strain induces normal-size tumors at temperatures up to 30 degrees C, whereas the wild-type Agrobacterium strain produces almost no tumors at 30 degrees C. These results suggest that at temperatures above 32 degrees C, the plant becomes more resistant to infection by A. tumefaciens and/or functions of some other vir gene products are lost in spite of their normal levels of expression.  相似文献   

14.
15.
16.
Mutation of the genes virA, virB, virC, and virG of the Agrobacterium tumefaciens octopine-type Ti plasmid pTiR10 was found to cause a 100- to 10,000-fold decrease in the frequency of conjugal transfer of this plasmid between Agrobacterium cells. This effect was not absolute, however, in that it occurred only during early times (18 to 24 h) of induction of the conjugal transfer apparatus by octopine. Induction of these mutant Agrobacterium strains by octopine for longer periods (48 to 72 h) resulted in a normal conjugal transfer frequency. The effect of these vir gene mutations upon conjugation could be restored by the introduction of cosmids harboring wild-type copies of the corresponding disrupted vir genes into the mutant Agrobacterium strains. In addition, transfer of the self-mobilizable plasmid pPH1JI was not impaired in any of the mutant Agrobacterium strains tested. The effect of vir gene function on the conjugal transfer of the Ti plasmid suggests that a relationship may exist between the processes that control the transfer of the T-DNA from Agrobacterium to plant cells and the conjugal transfer of the Ti plasmid between bacterial cells.  相似文献   

17.
18.
19.
20.
VirA and VirG activate the Agrobacterium tumefaciens vir regulon in response to phenolic compounds, monosaccharides, and acidity released from plant wound sites. VirA contains an amino-terminal periplasmic domain and three cytoplasmic domains: a linker, a protein kinase, and a phosphoryl receiver. We constructed internal deletions of virA that truncate one or more domains and tested the ability of the resulting proteins to mediate environmentally responsive vir gene activation in vivo. The periplasmic domain is required for sensing of monosaccharides (in agreement with earlier results), while the linker domain is required for sensing of phenolic compounds and acidity. The phosphoryl receiver domain of VirA plays an inhibitory role in signal transduction that may be modulated by phosphorylation. The carboxy terminus of the protein was also dispensable for tumorigenesis, while the periplasmic domain was required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号