首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nuclear reprogramming by human embryonic stem cells   总被引:3,自引:0,他引:3  
Surani MA 《Cell》2005,122(5):653-654
Embryonic stem cells have two unique properties. They are capable of indefinite self-renewal and, being pluripotent, they can differentiate into all possible cell types, including germ cells. A new study by Cowan et al. (2005) published in Science shows that human embryonic stem cells are able to reprogram the nuclei of fully differentiated human somatic cells, apparently conferring on them a pluripotent state.  相似文献   

3.
4.
5.
The process of 'cell reprogramming' can be achieved by somatic cell nuclear transfer, cell fusion with embryonic stem cells, exposure to stem cell extracts, or by inducing pluripotentcy mediated by defined factors giving rise to what are termed induced pluripotent stem cells. More recently, the fate of a somatic cell can be directly induced to uptake other cell fates, termed lineage-specific reprogramming, without the need to de-differentiate the cells to a pluripotent state. In this review we will describe the different methods of reprogramming somatic cells.  相似文献   

6.
Nuclear cloning is still a developing technique used to create genetically identical animals by somatic cell nuclear transfer into unfertilized eggs. Despite an intensive effort in a number of laboratories, the success rate of obtaining viable offspring from this technique remains less than 5%. In the past few years many investigators reported the reprogramming of specific nuclear activities in cloned animals, such as genome-wide gene expression patterns, DNA methylation, genetic imprinting, histone modifications and telomere length regulation. The results highlight the tremendous difficulty the clones face to reprogram the original differentiation status of the donor nuclei. Nevertheless, nuclei prepared from terminally differentiated lymphocytes can overcome this barrier and produce apparently normal mice. Study of this striking nuclear reprogramming activity should significantly contribute to our understanding of cell differentiation in more physiological settings.  相似文献   

7.
Chen M  Huang J  Yang X  Liu B  Zhang W  Huang L  Deng F  Ma J  Bai Y  Lu R  Huang B  Gao Q  Zhuo Y  Ge J 《PloS one》2012,7(4):e28203
Human induced pluripotent stem cells (iPSCs) provide a valuable model for regenerative medicine and human disease research. To date, however, the reprogramming efficiency of human adult cells is still low. Recent studies have revealed that cell cycle is a key parameter driving epigenetic reprogramming to pluripotency. As is well known, retroviruses such as the Moloney murine leukemia virus (MoMLV) require cell division to integrate into the host genome and replicate, whereas the target primary cells for reprogramming are a mixture of several cell types with different cell cycle rhythms. Whether cell cycle synchronization has potential effect on retrovirus induced reprogramming has not been detailed. In this study, utilizing transient serum starvation induced synchronization, we demonstrated that starvation generated a reversible cell cycle arrest and synchronously progressed through G2/M phase after release, substantially improving retroviral infection efficiency. Interestingly, synchronized human dermal fibroblasts (HDF) and adipose stem cells (ASC) exhibited more homogenous epithelial morphology than normal FBS control after infection, and the expression of epithelial markers such as E-cadherin and Epcam were strongly activated. Futhermore, synchronization treatment ultimately improved Nanog positive clones, achieved a 15-20 fold increase. These results suggested that cell cycle synchronization promotes the mesenchymal to epithelial transition (MET) and facilitates retrovirus mediated reprogramming. Our study, utilization of serum starvation rather than additional chemicals, provide a new insight into cell cycle regulation and induced reprogramming of human cells.  相似文献   

8.
Ren J  Pak Y  He L  Qian L  Gu Y  Li H  Rao L  Liao J  Cui C  Xu X  Zhou J  Ri H  Xiao L 《Cell research》2011,21(5):849-853
  相似文献   

9.
10.
11.
Germline cell differentiation is controlled by a specific set of genes whose expression is tightly locked into the repressed state in somatic cells. Large-scale epigenome alterations, now evidenced in nearly all cancers, lead to aberrant activation of these normally silenced genes, as attested by the many reports describing the expression of testis-specific factors, known as cancer-testis genes, in various cancer cells. Here, based on the literature, we argue that off-context activity of some of the testis-specific epigenome regulators can reprogram the somatic cell epigenome toward a malignant state by favoring self-renewal and sustaining cell proliferation under stressful conditions, thereby constituting a major oncogenic mechanism.  相似文献   

12.
13.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

14.
徐燕宁  关娜  张庆华  雷蕾 《生命科学》2008,20(2):231-236
人类的胚胎干细胞(embryonic stem cells,ES cells)可以用来治疗很多疾病,但是如果通过核移植来获得与供体或者患者相匹配的ES细胞,就会受到人卵母细胞来源等条件的制约。这就促使了将体细胞重编程为多潜能细胞这样一种技术策略的发展,其中包括将分化细胞与ES细胞融合,在卵细胞、ES细胞或多潜能癌细胞的抽提物中孵育,强制多潜能因子过表达等具体的方法。通过这些途径引出了一些核功能的重编程以及相应的DNA甲基化修饰、组蛋白翻译后修饰,使体细胞表达特定的多潜能因子,转变为类似胚胎干细胞的多潜能细胞。  相似文献   

15.
Reprogramming to pluripotency is a low‐efficiency process at the population level. Despite notable advances to molecularly characterize key steps, several fundamental aspects remain poorly understood, including when the potential to reprogram is first established. Here, we apply live‐cell imaging combined with a novel statistical approach to infer when somatic cells become fated to generate downstream pluripotent progeny. By tracing cell lineages from several divisions before factor induction through to pluripotent colony formation, we find that pre‐induction sister cells acquire similar outcomes. Namely, if one daughter cell contributes to a lineage that generates induced pluripotent stem cells (iPSCs), its paired sibling will as well. This result suggests that the potential to reprogram is predetermined within a select subpopulation of cells and heritable, at least over the short term. We also find that expanding cells over several divisions prior to factor induction does not increase the per‐lineage likelihood of successful reprogramming, nor is reprogramming fate correlated to neighboring cell identity or cell‐specific reprogramming factor levels. By perturbing the epigenetic state of somatic populations with Ezh2 inhibitors prior to factor induction, we successfully modulate the fraction of iPSC‐forming lineages. Our results therefore suggest that reprogramming potential may in part reflect preexisting epigenetic heterogeneity that can be tuned to alter the cellular response to factor induction.  相似文献   

16.
已分化的体细胞能够通过重编程转化回多能干细胞,在细胞移植、疾病细胞模型的制备以及药物筛选等领域具有重要意义。通过干细胞和体细胞的细胞融合,可使体细胞重编程。细胞融合致体细胞重编程速度快、效率高,是一种研究重编程机制的重要手段。对细胞融合致体细胞重编程的机制作一综述。  相似文献   

17.
18.
Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropriate post-translational modifications. The nuclear transfer of transgenic somatic cells is a powerful method to produce mammary gland bioreactors. We established an efficient gene transfer and nuclear transfer approach in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer and some of reconstructed embryos could develop into blastocyst in vitro. __________ Translated from Hereditas (Beijing), 2006, 28(12): 1513–1519 [译自: 遗传]  相似文献   

19.
Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.  相似文献   

20.
Somatic tissues in female eutherian mammals are mosaic due to random X inactivation. In contrast to mice, X chromosome reactivation does not occur during the reprogramming of human female somatic cells to induced pluripotent stem cells (iPSCs), although this view is contested. Using balanced populations of female Rett patient and control fibroblasts, we confirm that all cells in iPSC colonies contain an inactive X, and additionally find that all colonies made from the same donor fibroblasts contain the same inactive X chromosome. Notably, this extreme "skewing" toward a particular dominant, active X is also a general feature of primary female fibroblasts during proliferation, and the skewing seen in reprogramming and fibroblast culture can be alleviated by overexpression of telomerase. These results have important implications for in?vitro modeling of X-linked diseases and the interpretation of long-term culture studies in cancer and senescence using primary female fibroblast cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号