首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu Y  Xing D  Chen WR  Wang X 《Cellular signalling》2007,19(12):2468-2478
UV irradiation triggers apoptosis through both the membrane death receptor and the intrinsic apoptotic signaling pathways. Bax, a member of the Bcl-2 family of proteins, translocates from the cytosol to the mitochondrial membrane during UV-induced apoptosis, but the regulation of Bax translocation by UV irradiation remains elusive. In this study, we show that Bax translocation, caspase-3 activation and cell death by UV irradiation are not affected by Z-IETD-fmk (caspase-8 inhibitor), but delayed by Pifithrin- (p53 inhibitor), although Bid cleavage could be completely abolished by Z-IETD-fmk. Co-transfecting YFP-Bax and Bid-CFP into human lung adenocarcinoma cells, we demonstrate that translocation of YFP-Bax precedes that of Bid-CFP, there is no significant FRET (fluorescence resonance energy transfer) between them. Similar results are obtained in COS-7 cells expressing YFP-Bax and Bid-CFP. Furthermore, using acceptor photobleaching technique, we observe that there is no interaction between YFP-Bax and Bid-CFP in both healthy and apoptotic cells. Additionally, during UV-induced apoptosis there is downregulation of Bcl-xL, an anti-apoptotic protein. Overexpression of Bcl-xL in cells susceptible to UV-induced apoptosis prevents Bax translocation and cell death, repression of Bid protein with siRNA (small interfering RNA) do not inhibit cell death by UV irradiation. Taken together, these data strongly suggest that Bax translocation by UV irradiation is a Bid-independent event and inhibited by overexpression of Bcl-xL.  相似文献   

2.
Bcl-2 homology domain (BH) 3-only proteins couple stress signals to evolutionarily conserved mitochondrial apoptotic pathways. Caspase 8-mediated cleavage of the BH3-only protein Bid into a truncated protein (tBid) and subsequent translocation of tBid to mitochondria has been implicated in death receptor signaling. We utilized a recombinant fluorescence resonance energy transfer (FRET) Bid probe to determine the kinetics of Bid cleavage and tBid translocation during death receptor-induced apoptosis in caspase 3-deficient MCF-7 cells. Cells treated with tumor necrosis factor-alpha (200 ng/ml) showed a rapid cleavage of the Bid-FRET probe occurring 75.4 +/- 12.6 min after onset of the tumor necrosis factor-alpha exposure. Cleavage of the Bid-FRET probe coincided with a translocation of tBid to the mitochondria and a collapse of the mitochondrial membrane potential (DeltaPsim). We next investigated the role of Bid cleavage in a model of caspase-independent, glutamate-induced excitotoxic apoptosis. Rat cerebellar granule neurons were transfected with the Bid-FRET probe and exposed to glutamate for 5 min. In contrast to death receptor-induced apoptosis, neurons showed a translocation of full-length Bid to the mitochondria. This translocation occurred 5.6 +/- 1.7 h after the termination of the glutamate exposure and was also paralleled with a collapse of the DeltaPsim. Proteolytic cleavage of the FRET probe also occurred, however, only 25.2 +/- 3.5 min after its translocation to the mitochondria. Subfractionation experiments confirmed a translocation of full-length Bid from the cytosolic to the mitochondrial fraction during excitotoxic apoptosis. Our data demonstrate that both tBid and full-length Bid have the capacity to translocate to mitochondria during apoptosis.  相似文献   

3.
Employing fluorescence resonance energy transfer (FRET) imaging, we previously demonstrated that effector caspase activation is often an all-or-none response independent of drug choice or dose administered. We here investigated the signaling dynamics during apoptosis initiation via the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor pathway to investigate how variability in drug exposure can be translated into largely kinetically invariant cell death execution pathways. FRET-based microscopy demonstrated dose-dependent responses of caspase-8 activation and activity within individual living HeLa cells. Caspase-8 on average was activated 45-600 min after TRAIL/cycloheximide addition. Caspase-8-like activities persisted for 15-60 min before eventually inducing mitochondrial outer membrane permeabilization. Independent of the TRAIL concentrations used or the resulting caspase-8-like activities, mitochondrial outer membrane permeabilization was induced when 10% of the FRET substrate was cleaved. In contrast, in Bid-depleted cells, caspase-8-like activity persisted for hours without causing immediate cell death. Our findings provide detailed insight into the intracellular signaling kinetics during apoptosis initiation and describe a threshold mechanism controlling the induction of apoptosis execution.  相似文献   

4.
Liu Y  Pu Y  Zhang X 《Journal of virology》2006,80(1):395-403
A previous study demonstrated that infection of rat oligodendrocytes by mouse hepatitis virus (MHV) resulted in apoptosis, which is caspase dependent (Y. Liu, Y. Cai, and X. Zhang, J. Virol. 77:11952-11963, 2003). Here we determined the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis. We found that caspase-9 activity was 12-fold higher in virus-infected cells than in mock-infected cells at 24 h postinfection (p.i.). Pretreatment of cells with a caspase-9 inhibitor completely blocked caspase-9 activation and partially inhibited the apoptosis mediated by MHV infection. Analyses of cytochrome c release further revealed an activation of the mitochondrial apoptotic pathway. Stable overexpression of the two antiapoptotic proteins Bcl-2 and Bcl-xL significantly, though only partially, blocked apoptosis, suggesting that activation of the mitochondrial pathway is partially responsible for the apoptosis. To identify upstream signals, we determined caspase-8 activity, cleavage of Bid, and expression of Bax and Bad by Western blotting. We found a drastic increase in caspase-8 activity and cleavage of Bid at 24 h p.i. in virus-infected cells, suggesting that Bid may serve as a messenger to relay the signals from caspase-8 to mitochondria. However, treatment with a caspase-8 inhibitor only slightly blocked cytochrome c release from the mitochondria. Furthermore, we found that Bax but not Bad was significantly increased at 12 h p.i. in cells infected with both live and UV-inactivated viruses and that Bax activation was partially blocked by treatment with the caspase-8 inhibitor. These results thus establish the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis.  相似文献   

5.
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in a variety of cells, but the mechanism of this effect has not been fully elucidated. We report that diclofenac, a NSAID, induces growth inhibition and apoptosis of HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS), Akt, caspase-8, and Bid. ROS generation occurs in an early stage of diclofenac-induced apoptosis preceding cytochrome c release, caspase activation, and DNA fragmentation. N-Acetyl-L-cysteine, an antioxidant, suppresses ROS generation, Akt inactivation, caspase-8 activation, and DNA fragmentation. Cyclic AMP, an inducer of Akt phosphorylation, suppresses Akt inactivation, Bid cleavage, and DNA fragmentation. LY294002, a PI3 kinase inhibitor, enhances Akt inactivation and DNA fragmentation. Ac-IETD-CHO, a caspase-8 inhibitor, suppresses Bid cleavage and DNA fragmentation. z-VAD-fmk, a universal caspase inhibitor, but not cyclosporin A (CsA), an inhibitor of mitochondrial membrane permeability transition, suppresses DNA fragmentation. These results suggest the sequential mechanism of diclofenac-induced apoptosis of HL-60 cells: ROS generation suppresses Akt activity, thereby activating caspase-8, which stimulates Bid cleavage and induces cytochrome c release and the activation of caspase-9 and-3 in a CsA-insensitive mechanism. Furthermore, we found that 2-methoxyestradiol (2-ME), a superoxide dismutase inhibitor, significantly enhances diclofenac-induced apoptosis; that is, diclofenac combined with 2-ME may have therapeutic potential in the treatment of human leukemia.  相似文献   

6.
Galectin-1 (gal-1) triggers T cell death by several distinct intracellular pathways including the activation of the death-receptor pathway. The aim of this study was to investigate whether gal-1 induced activation of the death-receptor pathway in Jurkat T lymphocytes mediates apoptosis via the mitochondrial pathway linked by truncated Bid (tBid). We demonstrate that gal-1 induced proteolytic cleavage of the death agonist Bid, a member of the Bcl-2/Bcl-xL family and a substrate of activated caspase-8, was inhibited by caspase-8 inhibitor II (Z-IETD-FMK). Downstream of Bid, gal-1 stimulated mitochondrial cytochrome c release as well as the activation and proteolytic processing of initiator procaspase-9 were effectively decreased by caspase-8 inhibitor II. Blocking of gal-1 induced cleavage of effector procaspase-3 by caspase-8 inhibitor II as well as by caspase-9 inhibitors I (Z-LEHD-FMK) and III (Ac-LEHD-CMK) indicates that receptor and mitochondrial pathways converged in procaspase-3 activation and contribute to proteolytic processing of effector procaspase-6 and -7. Western blot analyses and immunofluorescence staining revealed that exposure of Jurkat T cells to gal-1 resulted in the cleavage of the DNA-repair enzyme poly (ADP-ribose) polymerase, cytoskeletal α-fodrin, and nuclear lamin A as substrates of activated caspases. Our data demonstrate that Bid provides a connection between the death receptor and the mitochondrial pathway of gal-1 induced apoptosis in human Jurkat T lymphocytes.  相似文献   

7.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

8.
We investigated the signaling pathways underlying nano-TiO2-induced apoptosis in cultured human lymphocytes. Nano-TiO2 increased the proportion of sub-G1 cells, activated caspase-9 and caspase-3, and induced caspase-3-mediated PARP cleavage. Nano-TiO2 also induced loss of mitochondrial membrane potential, which suggests that nano-TiO2 induces apoptosis via a mitochondrial pathway. A time-sequence analysis of the induction of apoptosis by nano-TiO2 revealed that nano-TiO2 triggered apoptosis through caspase-8/Bid activation. We also observed that inhibition of caspase-8 by z-IETD-fmk suppressed the caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and apoptosis. Nano-TiO2 activated two MAPKs, p38 and JNK. In addition, the selective p38 inhibitor SB203580 and selective JNK inhibitor SP600125 suppressed nano-TiO2-induced apoptosis and caspase-8 activation to moderate and significant extents, respectively. Knockdown of protein levels of JNK1 and p38 using an RNA interference technique also suppressed caspase-8 activation. Our results suggest that nano-TiO2-induced apoptosis is mediated by the p38/JNK pathway and the caspase-8-dependent Bid pathway in human lymphocytes.  相似文献   

9.
A new member of the TNF family, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), has been shown to induce apoptosis. However, the mechanism for TRAIL-induced apoptosis remains to be clarified. SDS-PAGE and Western blot analysis showed that cleavage of Bid was induced by a 1-h incubation of BJAB cells with TRAIL and was blocked by a caspase-8 inhibitor. Flow cytometry demonstrated that loss of mitochondrial membrane potential in BJAB cells began about 1.5 h after the treatment with TRAIL and was apparent at 2 h in comparison with the control. DNA ladder formation, which is characteristic for apoptosis, in the cells treated with TRAIL was detected at 2 h and observed most effectively at 3 h. The time course study suggests that TRAIL causes cleavage of Bid via activation of caspase-8, subsequently the loss of mitochondrial membrane potential, resulting in apoptosis in BJAB cells.  相似文献   

10.
Recently, caspase-2 was shown to act upstream of mitochondria in stress-induced apoptosis. Activation of caspase-8, a key event in death receptor-mediated apoptosis, also has been demonstrated in death receptor-independent apoptosis. The regulation of these initiator caspases, which trigger the mitochondrial apoptotic pathway, is unclear. Here we report a potential regulatory role of caspase-2 on caspase-8 during ceramide-induced apoptosis. Our results demonstrate the sequential events of initiator caspase-2 and caspase-8 activation, Bid cleavage and translocation, and mitochondrial damage followed by downstream caspase-9 and -3 activation and cell apoptosis after ceramide induction in T cell lines. The expression of truncated Bid (tBid) and the reduction in mitochondrial transmembrane potential were blocked by caspase-2 or caspase-8, but not caspase-3, knockdown using an RNA interference technique. Ceramide-induced caspase-8 activation, mitochondrial damage, and apoptosis were blocked in caspase-2 short interfering RNA-expressing cells. Therefore, caspase-2 acts upstream of caspase-8 during ceramide-induced mitochondrial apoptosis. Similarly, sequential caspase-2 and caspase-8 activation upstream of mitochondria was also observed in etoposide-induced apoptosis. These data suggest sequential initiator caspase-2 and caspase-8 activation in the mitochondrial apoptotic pathway induced by ceramide or etoposide.  相似文献   

11.
Fas death receptor signalling: roles of Bid and XIAP   总被引:1,自引:0,他引:1  
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.  相似文献   

12.
Exposure of cells to hyperthermia is known to induce apoptosis, although the underlying mechanisms are only partially understood. Here, we examine the molecular requirements necessary for heat-induced apoptosis using genetically modified Jurkat T-lymphocytes. Cells stably overexpressing Bcl-2/Bcl-x(L) or stably depleted of Apaf-1 were completely resistant to heat-induced apoptosis, implicating the involvement of the mitochondria-mediated pathway. Pretreatment of wild-type cells with the cell-permeable biotinylated general caspase inhibitor b-VAD-fmk (biotin-Val-Ala-Asp(OMe)-CH(2)F) both inhibited heat-induced apoptosis and affinity-labeled activated initiator caspase-2, -8, and -9. Despite this finding, however, cells engineered to be deficient in caspase-8, caspase-2, or the caspase-2 adaptor protein RAIDD (receptor-interacting protein (RIP)-associated Ich-1/CED homologous protein with death domain) remained susceptible to heat-induced apoptosis. Additionally, b-VAD-fmk failed to label any activated initiator caspase in Apaf-1-deficient cells exposed to hyperthermia. Cells lacking Apaf-1 or the pro-apoptotic BH3-only protein Bid exhibited lower levels of heat-induced Bak activation, cytochrome c release, and loss of mitochondrial membrane potential, although cleavage of Bid to truncated Bid (tBid) occurred downstream of caspase-9 activation. Combined, the data suggest that caspase-9 is the critical initiator caspase activated during heat-induced apoptosis and that tBid may function to promote cytochrome c release during this process as part of a feed-forward amplification loop.  相似文献   

13.
On binding to its receptor, transforming growth factor beta (TGFbeta) induces apoptosis in a variety of cells, including human B lymphocytes. We have previously reported that TGFbeta-mediated apoptosis is caspase-dependent and associated with activation of caspase-3. We show here that caspase-8 inhibitors strongly decrease TGFbeta-mediated apoptosis in BL41 Burkitt's lymphoma cells. These inhibitors act upstream of the mitochondria because they inhibited the loss of mitochondrial membrane potential observed in TGFbeta-treated cells. TGFbeta induced caspase-8 activation in these cells as shown by the cleavage of specific substrates, including Bid, and the appearance of cleaved fragments of caspase-8. Our data show that TGFbeta induces an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and caspase-9 and -3 activation. Caspase-8 activation was Fas-associated death domain protein (FADD)-independent because cells expressing a dominant negative mutant of FADD were still sensitive to TGFbeta-induced caspase-8 activation and apoptosis. This FADD-independent pathway of caspase-8 activation is regulated by p38. Indeed, TGFbeta-induced activation of p38 and two different inhibitors specific for this mitogen-activated protein kinase pathway (SB203580 and PD169316) prevented TGFbeta-mediated caspase-8 activation as well as the loss of mitochondrial membrane potential and apoptosis. Overall, our data show that p38 activation by TGFbeta induced an apoptotic pathway via FADD-independent activation of caspase-8.  相似文献   

14.
UV radiation from the sun activates both the membrane death receptor and the intrinsic or mitochondrial apoptotic signaling pathways in epidermal keratinocytes, triggering apoptosis and affording protection against skin cancer formation. We have investigated the involvement of caspase-9 in the UV death effector pathway in human keratinocytes, since this is the initiating caspase in the mitochondrial pathway required for UV-induced apoptosis in some, but not all, cell types. UV radiation triggered activation of caspase-3, caspase-9, and caspase-8 with similar kinetics, although the rank order of activation was caspase-3 > caspase-9 > caspase-8. Inhibition of caspase-9 with either the peptide inhibitor benzyloxycarbonyl-Leu-Glu(OCH(3))-His-Asp(OCH(3))-fluoromethyl ketone, or expression of a catalytically inactive caspase-9 by retroviral transduction, protected normal keratinocytes from UV-induced apoptosis. HaCaT keratinocytes harboring mutant p53 alleles were also protected from UV-induced apoptosis by the dominant negative caspase-9. The dominant negative caspase-9 blocked UV-induced activation of caspase-3, caspase-9, and caspase-8, and also protected cells from the loss of mitochondrial membrane potential. In contrast, the dominant negative caspase-9 did not protect from anti-Fas-induced apoptosis or caspase activation. These results identify caspase-9 as the critical upstream caspase initiating apoptosis by UV radiation in human keratinocytes, the relevant cell type for this important environmental carcinogen.  相似文献   

15.
In Jurkat cells Bid was cleaved upon activation of the Fas receptor with an anti-Fas antibody. The caspase-8 inhibitor benzyloxycarbonyl-Ile-Glu(OMe)-Thr-Asp(OMe)-CH(2)F (IETD) prevented the cleavage of Bid and the loss of viability. The nuclear enzyme poly(ADP-ribose)polymerase (PARP) was also cleaved upon the activation of caspases, and IETD similarly prevented PARP cleavage. The PARP inhibitor 3-aminobenzamide (3-AB) restored the cell killing in the presence of IETD, an effect that occurred without restoration of the cleavage of Bid or PARP. In the presence of 3-AB and IETD, translocation occurred of full-length Bid to the mitochondria. The induction of the mitochondrial permeability transition (MPT) was documented by the cyclosporin A (CyA) sensitivity of the release of cytochrome c, the release of malate dehydrogenase from the mitochondrial matrix, the loss of the mitochondrial membrane potential, and the pronounced swelling of these organelles, as assessed by electron microscopy. In addition to preventing all evidence of the MPT, CyA prevented the loss of cell viability, without effect on the cleavage of either Bid or PARP. The prevention of PARP cleavage by inhibition of caspase-3 resulted in a 10-fold activation of the enzyme and a resultant depletion of NAD and ATP. The PARP inhibitor 3-AB prevented the loss of NAD and ATP. Depletion of ATP by metabolic inhibitors similarly prevented the cell killing. It is concluded that the cleaving of PARP in Fas-mediated apoptosis allowed expression of an energy-dependent cell death program that included the translocation of full-length Bid to the mitochondria with induction of the MPT.  相似文献   

16.
The RNA alphavirus Semliki Forest (SFV) triggers apoptosis in various mammalian cells, but it has remained controversial at what infection stage and by which signalling pathways host cells are killed. Both RNA synthesis-dependent and -independent initiation processes and mitochondrial as well as death receptor signalling pathways have been implicated. Here, we show that SFV-induced apoptosis is initiated at the level of RNA replication or thereafter. Moreover, by expressing antiapoptotic genes from recombinant SFV (replicons) and by using neutralizing reagents and gene-knockout cells, we provide clear evidence that SFV does not require CD95L-, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)- or tumor necrosis factor-mediated signalling but mitochondrial Bak to trigger cytochrome c release, the fall in the mitochondrial membrane potential, apoptotic protease-activating factor-1/caspase-9 apoptosome formation and caspase-3/-7 activation. Of seven BH3-only proteins tested, only Bid contributed to effective SFV-induced apoptosis. However, caspase-8 activation and Bid cleavage occurred downstream of Bax/Bak, indicating that truncated Bid formation serves to amplify rather than trigger SFV-induced apoptosis. Our data show that SFV sequentially activates a mitochondrial, Bak-mediated, caspase-8-dependent and Bid-mediated death signalling pathway that can be accurately dissected with gene-knockout cells and SFV replicons carrying antiapoptotic genes.  相似文献   

17.
Resveratrol (RV), a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts, has an ability to inhibit various stages of carcinogenesis in vitro and in vivo. In this report, we explored the roles of intrinsic and extrinsic apoptotic pathways during RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. After exposure of cells to different concentrations of RV, we found that RV induced concentration-dependent apoptosis. Fluorometric substrates assay and western blotting (WB) analysis showed that caspase-8 was not activated, which was further verified by monitoring the cleavage of Bid to tBid using fluorescence resonance energy transfer (FRET) microscopy imaging inside single living cells, indicating that extrinsic apoptotic pathway was not involved in RV-induced apoptosis. In addition, inhibition of caspases-3 or -9 but not caspase-8 using the specific inhibitors of caspases modestly but significantly attenuated RV-induced apoptosis. Moreover, flow cytometry (FCM) analysis showed that RV treatment induced time-dependent loss of mitochondrial membrane potential (?ψ(m)), in combination with the activation of caspases-3 and -9; we therefore concluded that RV-induced apoptosis involved the intrinsic apoptotic pathway. It is noteworthy that RV treatment induced translocation of AIF from mitochondria to nucleus in a time dependent manner, and that knockdown of AIF remarkably attenuated RV-induced apoptosis. Collectively, our findings demonstrate that RV induces caspase-8-independent apoptosis via AIF and to a lesser extent caspase-9-dependent mitochondrial pathway in ASTC-a-1 cells.  相似文献   

18.
Death-associated protein (Daxx) deletion mutant (aa 501-625) has been known to be an inducer of apoptosis. In this study, we observed that the Bax-dependent mitochondrial death signaling pathway plays an important role in Daxx501-625-induced apoptosis. Daxx fragment-induced activation of caspase-9 and -3 was mediated through the apoptosis signal-regulating kinase 1 (ASK1)-MEK-c-Jun-N-terminal kinase (JNK)/p38-Bax pathway. By overexpressing JNK-binding domain (JBD) of JIP1, a JNK-inhibitory protein, and treatment with SB203580, a specific p38 inhibitor, DU-145 cells were made resistant to Daxx501-625-induced apoptosis. Capase-3 deficiency, Bax deficiency, or overexpression of a dominant-negative caspase-9 mutant prevented apoptosis, even though the Daxx501-625 fragment still activated the ASK1-MEK-MAPK pathway. Interestingly, Daxx501-625-induced Bcl-2 interacting domain (Bid) cleavage was suppressed in the dominant-negative caspase-9 mutant cells, whereas Bim was still phosphorylated in these cells. These results suggest that cleavage of Bid occurs downstream of caspase-9 activation. In contrast, phosphorylation of Bim is upstream of caspase-9 activation. Taken together, our results suggest that Daxx501-625-induced apoptosis is mediated through the ASK1-MEK-JNK/p38-Bim-Bax-dependent caspase pathway.  相似文献   

19.
Molecular mechanisms of echinocystic acid-induced apoptosis in HepG2 cells   总被引:12,自引:0,他引:12  
Echinocystic acid (EA), a natural triterpone enriched in various herbs, has been showed to have cytotoxic activity in some cancer cells, and is used for medicinal purpose in many Asian countries. In the present study, we found that EA could induce apoptosis in human HepG2 cells, as characterized by DNA fragmentation, activation of caspase-3, -8, and -9, and PARP cleavage. The efficacious induction of apoptosis was observed at 45 microM for 24 h. Molecular data showed that EA induced the truncation of Bid protein and reduction of Bcl-2 protein. EA also caused the loss of mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c release from mitochondria to cytosol. Moreover, EA could activate c-Jun NH(2)-terminal kinase (JNK) and p38 kinase, and JNK-specific inhibitor SP600125 and p38 kinase-specific inhibitor SB200235 could block serial molecular events of EA-induced apoptosis such as Bid truncation, Bcl-2 reduction, cytochrome c release, caspase activation, and DNA fragmentation in HepG2 cells. These findings indicate that JNK- and p38 kinase-mediated mitochondrial pathways might be involved in EA-induced apoptosis and enhance our understanding of the anticancer function of EA in herbal medicine.  相似文献   

20.
Kim HJ  Kang SK  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2003,555(2):217-222
Vitamin K-related analogs induce growth inhibition via a cell cycle arrest through cdc25A phosphatase inhibition in various cancer cell lines. We report that 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDN), a naphthoquinone analog, induces mitochondria-dependent apoptosis in human promyelocytic leukemia HL-60 cells. DDN induced cytochrome c release, Bax translocation, cleavage of Bid and Bad, and activation of caspase-3, -8, -9 upon the induction of apoptosis. Cleavage of Bid, the caspase-8 substrate, was inhibited by the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk), whereas cytochrome c release was not affected, suggesting that activation of caspase-8 and subsequent Bid cleavage occur downstream of cytochrome c release. DDN inhibited the activation of Akt detected by decreasing level of phosphorylation. Overexpression of constitutively active Akt protected cells from DDN-induced apoptosis, while dominant negative Akt moderately enhanced cell death. Furthermore, Akt prevented release of cytochrome c and cleavage of Bad in DDN-treated HL-60 cells. Taken together, DDN-induced apoptosis is associated with mitochondrial signaling which involves cytochrome c release via a mechanism inhibited by Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号