首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acidic polysaccharides were isolated from the Pseudomonas aeruginosa II (Sandvik) and V (Verder-Evans) lipopolysaccharides on mild acid hydrolysis followed by gel filtration on Sephadex G-50. The Sandvik II polysaccharide consists of 2-acetamido-2-deoxy-D-galacturonic acid, 2-acetamido-2,6-dideoxy-D-glucose, and L-rhamnose in the ratio 1:1:2. The Verder-Evans V polysaccharide contained the same monosaccharides and, in addition, a D-glucose residue. On the basis of 13C NMR data, methylation analysis, Smith degradation and solvolysis with hydrogen fluoride, the following structures were determined for the repeating units of the polysaccharides: (Formula: see text).  相似文献   

2.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Shewanella algae strain BrY lipopolysaccharide and was found to contain L-rhamnose, 2-acetamido-4-[D-3-hydroxybutyramido)]-2,4,6-trideoxy-D-glucose (D-BacNAc4NHbu), and 2-amino-2,6-dideoxy-L-galactose, N-acylated by the 4-carboxyl group of L-malic acid (L-malyl-(4-->2)-alpha-L-FucN) in the ratio 2:1:1. 1H and 13C NMR spectroscopy was applied to the intact polysaccharide, and the following structure of the repeating unit was established:-3)-alpha-D-BacNAc4NHbu-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->2)-L-malyl-(4-->2)-alpha-L-FucN-(1-. The repeating unit includes linkage via the residue of malic acid, reported here for the first time as a component of bacterial polysaccharides.  相似文献   

3.
O-Specific polysaccharide composed of L-rhamnose and 2-acetamido-2-deoxy-D-mannose was obtained on mild acid degradation of P. aeruginosa X (Meitert classification) lipopolysaccharide. On the basis of non-destructive analis using 1H, 13C NMR spectroscopy and Klyne's rule calculation, as well as chemical methods (acid hydrolysis, methylation, Smith degradation), it was established that the polysaccharide is built up of disaccharide repeating units of the following structure: ----4)-alpha-L-Rha-(1----3)-beta-D-ManNAc-(1----.  相似文献   

4.
Derivatives of azidosugars were shown to be stable under conditions of trityl-cyanoethylidene condensation. Tritylated 1,2-O-(1-cyano)ethylidene derivative of 2-azido-2-deoxy-beta-D-mannopyranosyl-(1----4)-L-rhamnopyranose was used as a starting material for the synthesis of [----3)-beta-D-ManNAc-(1----4)-alpha-L-Rha-(1----]n, the O-specific polysaccharide of Pseudomonas aeruginosa X (Meitert).  相似文献   

5.
A loosely bound lipopolysaccharide-protein complex was extracted from cells of Pseudomonas aeruginosa strain 170015 (O:7ab; Lanyi classification) by saline solution and purified from contaminant nucleic acid by Cetavlon treatment followed by precipitation in an ultracentrifuge. The saline-treated cells were re-extracted with hot aqueous phenol to give firmly bound lipopolysaccharide which was isolated from the phenol layer and purified by ultracentrifugaiton. The identity of both lipopolysaccharide preparations was proved by serological and chemical evidence. Mild acid degradation of the lipopolysaccharide resulted in the splitting off of a lipid component and led to polysaccharide which was purified by gel-filtration on a Sephadex G-50 column. The polysaccharide consisted of N-acetyl-D-fucosamine, N-acetyl-L-fucosamine and D-glucose in the ratio 1:1:1. On the basis of nuclear magnetic resonance spectra, results of methylation analysis and two sequential Smith degradations, the following structure can be assigned to the repeating unit of the polysaccharide: -3)LFucNAc(alpha 1-3)DFucNAc(beta 1-2)DGlc(beta 1-. The polysaccharide did not show serological activity whereas alkali-treated lipopolysaccharide readily sensitised sheep erythrocytes and inhibited the passive haemagglutination reaction with anti-(O:7a,b)serum. Evidence is presented that the oligosaccharide repeating units of the polysaccharide and alkali-treated lipopolysaccharide are indistinguishable. Ps. aeruginosa strain 170016 (O:7a,c) was shown to have the O-specific lipopolysaccharide identical with that from strain 170015. The presented data show that subfactors 7b and 7c in the Lanyi classification of Ps. aeruginosa O-antigens seem to relate to components of the bacterial surface other than lipopolysaccharides.  相似文献   

6.
On the basis of non-destructive analysis by means of 1H and 13C NMR spectroscopy and calculation of specific optical rotation, it was concluded that O-specific polysaccharide of Pseudomonas cepacia strain IMV 4207 (serotype A) has the structure (I): (formula; see text) Two structurally different polysaccharides were found in the ratio of approximately 2.5:1 in P. cepacia strain IMV 598/2 which is serologically related to serotype A in Nakamura classification and serotype 2 in Heidt classification. The minor polysaccharide has the structure (I) whereas the major one possesses the structure (II) which is characteristic of the formerly studied O-specific polysaccharide of P. cepacia strain IMV 4137 belonging to serotype 2: ----4)-beta-D-Galp-(1----2)-alpha-L-Rhap-(1----.  相似文献   

7.
The lipopolysaccharide from Pseudomonas aeruginosa O12 (Lányi classification) gave on mild acid hydrolysis an O-specific polysaccharide built of D-ribose and N-acetyl-D-galactosamine. The disaccharide structure----4)-alpha-GalNAcp-(1----2)-beta-Ribf-(1----for the repeating unit of the polysaccharide was established by nondestructive way involving full interpretation of its 1H- and 13C-NMR-spectra, using homonuclear and selective heteronuclear 13C[1H] double resonances.  相似文献   

8.
O-specific polysaccharides, obtained on mild acid degradation of lipopolysacchrides of the serologically related strains Pseudomonas aeruginosa O3 (Lányi classification), O25 (Wokatsch classification) and immunotypes 3 and 7 (Fisher classification), are built up of trisaccharide repeating units involving 2-acetamido-2,6-dideoxy-D-galactose (N-acetyl-D-fucosamine), 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid or 2,3-diacetamido-2,3-dideoxy-L-guluronic acid and 3-acetamidino-2-acetamido-2,3-dideoxy-D-mannuronic acid or 3-acetamidino-2-acetamido-2,3-dideoxy-L-guluronic acid. Lányi O3(a),3d,3f and Wokatsch O25 polysaccharides contain also O-acetyl groups. On the basis of solvolysis with anhydrous hydrogen fluoride, resulting in trisaccharide fragments with N-acetylfucosamine residue at the reducing terminus, chemical modifications of the acetamidino group (alkaline hydrolysis to the acetamido group or reductive deamination to the ethylamino group), as well as analysis by 1H-NMR (including nuclear Overhauser effect experiments) and 13C-NMR spectroscopy, and fast-atom bombardment mass spectrometry, it was concluded that the repeating units of the polysaccharides have the following structures: (Formula: see text) where HexNAcAmA = alpha-L-GulNAcAmA (approximately 70%) or beta-D-ManNacAMA (approximately 30%). Lányi O3(a),3d,3f polysaccharide involves two types of repeating units, which differ from each other only in the configuration at C-5 of the 3-acetamidino-2-acetamido-2,3-dideoxyuronic acid residue. Lányi O3(a),3c,O3a,3d,3e and Fisher immunotypes 3 and 7 polysaccharides contain, together with the major repeating units shown above, a small proportion of units in which the derivative of alpha-L-guluronic acid is replaced by the corresponding beta-D-manno isomer. The data obtained provide the opportunity to substantiate the serological interrelations between these strains of P. aeruginosa by the presence in the O-specific polysaccharides of common monosaccharides or disaccharide fragments. The distinctions between them stem from the presence or absence of the O-acetyl group, a different configuration of the glycosidic linkage of the N-acetylfucosamine residue and/or a different configuration at C-5 of one or both derivatives of diaminouronic acids.  相似文献   

9.
The results of the study of the Pseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide (LPS) isolated from the dry bacterial mass by Westphal's method and purified by repeated ultracentrifugation are presented. The macromolecular organization of the LPS is characterized by the presence of S and R forms of LPS molecules in a 1:1 ratio. The structural components of the LPS molecule--lipid A, the core oligosaccharide, and the O-specific polysaccharide--were isolated and characterized. 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, and dodecanoic acids proved to be the main lipid A fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic portion. Glucose, galactose, arabinose, rhamnose, glucosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulonate (KDO) were revealed in the heterogeneous fraction of the core oligosaccharide. The O-specific polysaccharide chain was composed of repeating tetrasaccharide units consisting of L-rhamnose (L-Rha), 3,6-dideoxy-3-[(S)-3-hydroxybutyramido]-D-glucose (D-Qui3NHb), 2-acetamido-2,4,6-trideoxy-4[(S)-3-hydroxybutyramido-D-glucose (D-QuiNAc4NHb), and 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) residues. A peculiarity of the O-specific polysaccharide was that it released, upon partial acid hydrolysis, the nonreducing disaccharide GalNAcA-->QuiNAc4NHb with a 3-hydroxybutyryl group glycosylated intramolecularly with a QuiN4N residue. Double immunodiffusion in agar and lipopolysaccharide precipitation reactions revealed no serological interrelationship between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

10.
Novel O-serotypes were revealed among Pseudomonas syringae pv. garcae strains by using a set of mouse monoclonal antibodies specific to the lipopolysaccharide O-polysaccharide. Structural studies showed that the O-polysaccharide of P. syringae pv. garcae NCPPB 2708 is a hitherto unknown linear L-rhamnan lacking strict regularity and having two oligosaccharide repeating units I and II, which differ in the position of substitution in one of the rhamnose residues and have the following structures: I: --> 3)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 -->; II: --> 3)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 -->. The branched polysaccharides of P. syringae pv. garcae ICMP 8047 and NCPPB 588 have the same L-rhamnan backbone with repeating units I and II and a lateral chain of (alpha1 --> 4)- or (alpha1 --> 3)-linked residues of 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc). Several monoclonal antibody epitopes associated with the L-rhamnan backbone or the lateral alpha-D-Fuc3NAc residues were characterized.  相似文献   

11.
The O-specific polysaccharide, obtained on mild acid degradation of lipopolysaccharide of Pseudomonas aeruginosa O13 (Lányi classification), is built up of trisaccharide repeating units involving 2-acetamidino-2,6-dideoxy-D-glucose (N-acetyl-D-quinovosamine, D-QuiNAc), 2-acetamidino-2,6-dideoxy-L-galactose (L-fucosacetamidine, L-FucAm), and a new sialic-acid-like sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-L-galacto-nonuloso n ic acid (Sug), and thus contains simultaneously both acidic and basic functions. Cleavage of the polysaccharide with hydrogen fluoride in methanol revealed the high stability of the glycosidic linkage of the ulosonic acid and afforded methyl glycosides of a disaccharide and a trisaccharide. The structures of the new ulosonic acid and acetamidino group were established by analysing the oligosaccharide fragments by 1H, 13C nuclear magnetic resonance spectrometry, as well as on the basis of their chemical conversions: alkaline hydrolysis of the acetamidino group into acetamido group, reductive deamination with lithium borohydride into the ethylamino group and acetylation with acetic anhydride in pyridine accompanied by intramolecular acylation of the acetamidino function by the ulosonic acid to form a six-membered lactam ring. Identification of the oligosaccharide fragments and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and polysaccharide revealed the following structure of the repeating unit: ----3)D-QuiNAcp(alpha 1----3)Sugp(alpha 2----3)L-FucAmp(alpha 1----.  相似文献   

12.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

13.
The specific polysaccharide was obtained from the lipopolysaccharide of Shigella newcastle by mild acid hydrolysis and further purified by permeation chromatography on Sephadex G-50. It was found to consist of L-rhamnose, 2-acetamido-2-deoxy-D-galactose, D-galacturonic acid residues and O-acetyl groups in the molar ratios of 2:1:1:1. On the basis of 1H and 13C nuclear magnetic resonance spectroscopy, methylation analysis, partial acid hydrolysis, Smith degradation, and chromium trioxide oxidation, the following structure can be assigned to the repeating oligosaccharide unit of the polysaccharide:-4)DGalA(beta 1-3)DGalNAc-(beta 1-2)LAc3Rha(alpha 1-2)LRha(alpha 1-, where GalA = galacturonic acid. GalNAc = N-acetylgalactosamine, Ac3Rha = 3-O-acetylrhamnose. The structural and immunochemical data presented prove that Sh. newcastle lipopolysaccharide belongs to a 'non-classical' type of somatic antigens with acidic O-specific polysaccharide chains.  相似文献   

14.
Mild acid degradation of lipopolysaccharides from Pseudomonas aeruginosa O10a and O10a,b (Lányi classification) resulted in O-specific polysaccharides built up of trisaccharide repeating units containing 2-acetamido-2,6-dideoxy-D-glucose (N-acetylquinovosamine, DQuiNAc), 2-acetamido-2,6-dideoxy-D-galactose (N-acetylfucosamine, DFucNAc), and 5-acetamido-3,5,7,9-tetradeoxy-7-[(R)-3-hydroxybutyramido] -L-glycero-L-manno-nonulosonic acid. The latter is a di-N-acyl derivative of a new sialic-acid-like sugar which was called by us pseudaminic acid (PseN2). A 3-hydroxybutyric acid residue was also found in natural carbohydrates for the first time. In the O10a,b polysaccharide pseudaminic acid carried an O-acetyl group at position 4. For selective cleavage of the O10a polysaccharide, solvolysis with hydrogen fluoride was employed which, owing to the relatively high stability of the glycosidic linkage of pseudaminic acid, led to the disaccharide with this sugar on the non-reducing terminus. Performing the solvolysis in methanol afforded the methyl glycoside of this disaccharide which proved to be more advantageous for further analysis. Carboxyl-reduction made the glycosidic linkage of pseudaminic acid extremely labile, and mild acid hydrolysis of the carboxyl-reduced 010a polysaccharide afforded the trisaccharide with a ketose derivative on the reducing terminus. Establishing the structure of the oligosaccharide fragments obtained and interpreting the 13C nuclear resonance spectra of the polysaccharides allowed to determine the following structure for their repeating units: (formula: see text) In the polysaccharides the N-acetylquinovosamine residue is attached not to pseudaminic acid itself, but to its N-acyl substituent, 3-hydroxybutyryl group, and thus the monomers are linked via both glycosidic and amidic linkages.  相似文献   

15.
Serologically active O-specific polysaccharides were obtained on mild acid hydrolysis of lipopolysaccharides from Pseudomonas cerasi 467 and Pseudomonas syringae pv. syringae strains 218 and P-55. On the basis of 1H- and 13C-NMR analysis, it was concluded that the P. cerasi polysaccharide has the following structure: ----3)-alpha-D-Rhap-(1----3)-alpha-D-Rhap-(1----2)-alpha-D-+ ++Rhap-(1---- which is identical to that of O-specific polysaccharide from P. syringae pv. morsprunorum C28 (Smith A. R. W. et al. Eur. J. Biochem., 1985, V. 149, No 1, p. 73-78). The polysaccharides from P. syringae pv. syringae strains possess the same backbone but differ by the presence of D-fucose as monosaccharide branches. Methylation and 1H- and 13C-NMR analysis revealed the following structure of these polysaccharides: (Formula: see text). The degree of substitution of the backbone trisaccharide units by the fucofuranose residues is about 35% for the strain 218 and about 85% for the strain P-55.  相似文献   

16.
Lipopolysaccharides were isolated from dry bacterial cells of Pseudomonas aeruginosa O5a,b,c, O5a,b,d, O5a,d (Lányi classification) and immunotype 6 (Fisher classification) by the Westphal procedure. Their polysaccharide chains were built up of trisaccharide repeating units containing D-xylose, 2-acetamido-2,6-dideoxy-D-galactose and a new sialic acid-like sugar, the di-N-acyl derivative of 5,7-diamino-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic (pseudaminic) acid. Formyl, acetyl and (R)-3-hydroxybutyryl groups were identified as the N-acyl substituents of the last monosaccharide; O5a,b,c and O5a,b,d lipopolysaccharides also contained O-acetyl groups. The glycosidic linkage of pseudaminic acid was extremely labile towards acids, and mild acid degradation of the lipopolysaccharides produced, instead of the O-specific polysaccharides, their trisaccharide fragments with pseudaminic acid at the reducing terminus. Similar degradation of immunotype 6 lipopolysaccharides, followed by oxidation with sodium metaperiodate, resulted in a disaccharide fragment due to destruction of xylose. In contrast the glycosidic linkage of pseudaminic acid proved to be more stable towards treatment with hydrogen fluoride than those of xylose and N-acetylfucosamine. As a result, solvolysis of immunotype 6 lipopolysaccharide with hydrogen fluoride in methanol gave methyl glycosides of a disaccharide and a trisaccharide with pseudaminic acid at the non-reducing terminus. Mild acid hydrolysis of these oligosides afforded free 5-N-acetyl-7-N-formylpseudaminic acid, which was identified by the 1H ande 13C nuclear magnetic resonance data, as well as by the mass spectrum of the corresponding fully methylated aldonic acid. As a result of the identification of all oligosaccharides obtained and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and lipopolysaccharides the following structures were established for the repeating units of the polysaccharide chains of the lipopolysaccharides: (Formula: see text) where D-Xyl = D-xylose, D-FucNAc = 2-acetamido-2,6-dideoxy-D-galactose, Pse5N7NFm = 5-amino-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno-nonulosonic+ ++ acid (7-N-formylpseudaminic acid). All the polysaccharides have an identical carbohydrate skeleton and differ from each other by the acyl substituent at N-5 of pseudaminic acid [acetyl or (R)-3-hydroxybutyryl group] or by the presence or absence of the O-acetyl group at position 4 of N-acetylfucosamine. The data obtained account properly for the O specificity of the studied P. aeruginosa strains.  相似文献   

17.
Specific acidic polysaccharide has been isolated from the Shigella boydii type 9 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and L-rhamnose. From the results of methylation analysis, partial acid hydrolysis and 13C NMR data the structure of the repeating unit of the polysaccharide was deduced as follows: [----4)DGlcp(alpha 1----4)DGlcAp(beta 1----3)DGlcNAcp(alpha 1----3)LRhap(alpha 1----]n. The lipopolysaccharide from Sh. boydii 9 was fractionated by gel chromatography on the Sephadex G-200 column in a buffer containing sodium deoxycholate into three fractions. PAGE-SDS of the fractions obtained, 13C NMR- and chromato-mass-spectrometry data indicated that the three fractions contained the O-specific polysaccharide as the only carbohydrate component. The substance from the most high-molecular weight fraction contained unusually long O-specific chains (60,000 dalton). In the fat acid composition this fraction differed from other lipopolysaccharides by absence of beta-hydroxymyristic acid.  相似文献   

18.
An O-specific polysaccharide has been isolated on mild acid hydrolysis of lipopolysaccharide from Yersinia pseudotuberculosis serovar IIc and shown to consist of abequose, D-mannose and 2-acetamido-2-deoxy-D-galactose residues in the ratio 0.8:3:1. From the results of acid hydrolysis, 13C NMR, methylation and periodate oxidation studies the structure of the repeating unit of the O-specific polysaccharide is deduced as follows: (formula; see text)  相似文献   

19.
Structural studies have been carried out on the O-specific fraction from the lipopolysaccharide of Pseudomonas aeruginosa NCTC 8505, Habs serotype 03. The O-specific polysaccharide has a tetrasaccharide repeating-unit containing residues of L-rhamnose (Rha), 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamido-2-deoxy-L-galacturonic acid (GalNAcA), and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (BacNAc2). The following structure has been assigned to the repeating-unit: leads to 3)Rhap(beta 1 leads to 6)GlcpNAc(alpha 1 leads to 4)GalpNAcA(alpha 1 leads to 3)BacpNAc2(alpha 1 leads to. The parent lipopolysaccharide is a mixture of S, R, and SR species, and its high phosphorus content is partly due to the presence of triphosphate residues, as found for other lipopolysaccharides from P. aeruginosa. In addition to phosphorus, heptose, a 3-deoxyoctulosonic acid, and amide-bound alanine, the core oligosaccharide contains glucose, rhamnose, and galactosamine (molar proportions 3:1:1). The rhamnose and part of the glucose are present as unsubstituted pyranoside residues: other glucose residues are 6-substituted.  相似文献   

20.
O-Specific polysaccharide was obtained by mild acid degradation of Proteus penneri strain 16 lipopolysaccharide and found to contain D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and 3,6-dideoxy-3-[(R)-3-hydroxybutyramido]- D-galactose in the ratio of 2:1:1:1 as well as a small proportion of O-acetyl groups. On the basis of one-dimensional 1H-NMR13C-NMR and NOE spectroscopy, two-dimensional homonuclear-shift-correlated spectroscopy with one-step and two-step relayed coherence transfer and heteronuclear 1H/13C NMR shift-correlated spectroscopy, it was concluded that the O-specific polysaccharide of P. penneri strain 16 has the following structure: (formula; see text) This structure was confirmed by methylation analysis and structural analysis of a linear tetrasaccharide fragment prepared by cleavage of the polysaccharide with anhydrous hydrogen fluoride followed by conversion of the alpha-tetrosyl fluoride obtained in to the corresponding free oligosaccharide and alditol. O-Acetyl groups were tentatively located at position 3 of the glucuronic acid residue and at position 4 of the 6-substituted glucose residue, the degree of acetylation being less than 20% of the total. Cross-reactions of P. penneri strain 16 anti-(O-specific polysaccharide) antiserum with lipopolysaccharides from several other Proteus strains and the role of 3,6-dideoxy-3-(R)-3-hydroxybutyramido-D-galactose in the serological specificity of P. penneri strain 16 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号