首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The low-frequency torsional modes, index of refraction, and absorption of a tryptophan film and pressed powders from 0.2 to 2.0 THz (6.6-66 cm(-1)) were measured by terahertz time-domain spectroscopy at room temperature. It was found that there were two dominated torsional vibrational modes at around 1.435 and 1.842 THz. The associated relaxation lifetimes ( approximately 1 ps) for these modes of the tryptophan molecule were measured. Using a density-functional calculation, the origins of the observed torsional vibrations were assigned to the chain and ring of the tryptophan molecule.  相似文献   

2.
We studied the temperature dependent vibrational modes of the glycosidic bond in trehalose, sucrose, and maltose at wavenumbers ranging from 1000 to 1200 cm(-1). We found that the slope of temperature dependent Raman shifts of the glycosidic bond in trehalose and sucrose changed at temperatures around 120 degrees C, indicating a bond length or a bond angle (dihedral and torsional angles) change. However, we did not observe any slope change in maltose because the melting temperature of maltose is very close to 120 degrees C. We also found, at temperatures below 120 degrees C, that Raman shifts of the vibrational modes of the glycosidic bond in trehalose showed the strongest temperature dependence among the three disaccharides.  相似文献   

3.
4.
The temperature-dependence of a large number of NMR parameters describing hydrogen bond properties in the protein ubiquitin was followed over a range from 5 to 65 degrees C. The parameters comprise hydrogen bond (H-bond) scalar couplings, h3JNC', chemical shifts, amide proton exchange rates, 15N relaxation parameters as well as covalent 1JNC' and 1JNH couplings. A global weakening of the h3JNC' coupling with increasing temperature is accompanied by a global upfield shift of the amide protons and a decrease of the sequential 1JNC' couplings. If interpreted as a linear increase of the N...O distance, the change in h3JNC' corresponds to an average linear thermal expansion coefficient for the NH-->O hydrogen bonds of 1.7 x 10(-4)/K, which is in good agreement with overall volume expansion coefficients observed for proteins. A residue-specific analysis reveals that not all hydrogen bonds are affected to the same extent by the thermal expansion. The end of beta-sheet beta1/beta5 at hydrogen bond E64-->Q2 appears as the most thermolabile, whereas the adjacent hydrogen bond I3-->L15 connecting beta-strands beta1 and beta2 is even stabilized slightly at higher temperatures. Additional evidence for the stabilization of the beta1/beta2 beta-hairpin at higher temperatures is found in reduced hydrogen exchange rates for strand end residue V17. This reduction corresponds to a stabilizing change in free energy of 9.7 kJ/mol for the beta1/beta2 hairpin. The result can be linked to the finding that the beta1/beta2 hairpin behaves as an autonomously folding unit in the A-state of ubiquitin under changed solvent conditions. For several amide groups the temperature-dependencies of the amide exchange rates and H-bond scalar couplings are uncorrelated. Therefore, amide exchange rates are not a sole function of the hydrogen bond "strength" as given by the electronic overlap of donors and acceptors, but are clearly dependent on other blocking mechanisms.  相似文献   

5.
We report an unusually high frequency (543 cm(-)(1)) for an Fe-CO stretching mode in the CO complex of Ascaris suum hemoglobin as compared to vertebrate hemoglobins in which the frequency of the Fe-CO mode is much lower. A second Fe-CO stretching mode in Ascaris hemoglobin is observed at 515 cm(-1). We propose that these two Fe-CO stretching modes arise from two protein conformers corresponding to interactions of the heme-bound CO with the B10-tyrosine or the E7-glutamine residues. This postulate is supported by spectra from the B10-Tyr --> Phe mutant in which the 543 cm(-1) line is absent. Thus, a strong polar interaction, such as hydrogen bonding, of the CO with the distal B10 tyrosine residue is the dominant factor that causes this anomalously high frequency. Strong hydrogen bonding between O(2) and distal residues in the oxy complex of Ascaris hemoglobin has been shown to result in a rigid structure, rendering an extremely low oxygen off rate [Gibson, Q. H., and Smith, M. H. (1965) Proc. R. Soc. London B 163, 206-214]. In contrast, the CO off rate in Ascaris hemoglobin is very similar to that in sperm whale myoglobin. The high CO off rate relative to that of O(2) in Ascaris hemoglobin is attributed to a rapid equilibrium between the two conformations of the protein in the CO adduct, with the off rate being determined by the conformer with the higher rate.  相似文献   

6.
With the increasing demand for blood transfusions, the production of human hemoglobin (Hb) from sustainable sources is increasingly studied. Microbial production is an attractive option, as it may provide a cheap, safe, and reliable source of this protein. To increase the production of human hemoglobin by the yeast Saccharomyces cerevisiae, the degradation of Hb was reduced through several approaches. The deletion of the genes HMX1 (encoding heme oxygenase), VPS10 (encoding receptor for vacuolar proteases), PEP4 (encoding vacuolar proteinase A), ROX1 (encoding heme-dependent repressor of hypoxic genes) and the overexpression of the HEM3 (encoding porphobilinogen deaminase) and the AHSP (encoding human alpha-hemoglobin-stabilizing protein) genes — these changes reduced heme and Hb degradation and improved heme and Hb production. The reduced hemoglobin degradation was validated by a bilirubin biosensor. During glucose fermentation, the engineered strains produced 18% of intracellular Hb relative to the total yeast protein, which is the highest production of human hemoglobin reported in yeast. This increased hemoglobin production was accompanied with an increased oxygen consumption rate and an increased glycerol yield, which (we speculate) is the yeast's response to rebalance its NADH levels under conditions of oxygen limitation and increased protein-production.  相似文献   

7.
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).  相似文献   

8.
We propose a model that some vibrational modes of the protein in bacterial photosynthetic reaction centers may be frozen at low temperatures. The freezing of the protein-environmental motion can affect the electron transfer rate through changes in the reorganization energy and the free energy gap. We offer a qualitative explanation of the different kinetics of the ET processes in reaction centers which are cooled in the dark and cooled under illumination.  相似文献   

9.
Experiments on mutants of tyrosyl-tRNA synthetase have shown that there can be linear free energy relationships (LFERs) between changes in activation free energies and changes in binding energies when groups are deleted that bind to non-reacting parts of the substrate (Fersht et al., 1986, 1987). It has now been proposed (Straub and Karplus, 1990) that such LFERs can occur for the mutation of hydrogen bonding groups only for the limiting examples of Br?nsted beta of 0, 1 or infinity, and that fractional values of beta are not permissible. The reasoning behind this is that the energy of a hydrogen bond is not linear with distance and the (false) premise that an LFER requires that there is a linear relationship between bond energy and distance. We show from a simple model how LFERs can arise for binding interactions and how they can give fractional values of beta, in accord with experimental evidence. An LFER occurs between binding and catalysis when a set of interactions exists in which each member contributes to the binding energy of the transition state the same fraction of the binding energy it contributes to the products (both relative to the ground state).  相似文献   

10.
Conformational energy calculations have been used to study the role of the proline residues in the folding of bovine pancreatic trypsin inhibitor. In the calculation, each of the four proline residues of this small protein is forced from the trans to cis peptide isomer while still part of the native folded structure. The cis proline residue can always be accommodated by small changes of the native conformation (< 1 Å root-mean-square deviation). For three of the four proline residues, Pro2, Pro9 and Pro 13, being in the cis form is calculated to destabilize the folded conformation by less than 11 kcal/mol, suggesting that rapid folding to a stable native-like conformation can occur with either isomeric form. For one of these three, Pro13, the destabilization is only 1 kcal/mol, suggesting the existence of an alternative folded native conformation with Pro13 cis. The fourth proline residue, Pro8, is calculated to destabilize the native conformation by so much (33 kcal/mol) that it will block folding in the manner proposed by Brandts et al. (1975).  相似文献   

11.
The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe–OH and Fe–CN frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH ligand, CN binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

12.
The Fe-CO bond dissociation energy (BDE) in myoglobin (Mb) has been calculated with B3LYP quantum mechanics/molecular mechanics methods for 22 different Mb conformations, generated from molecular dynamics simulations. Our average BDE of 8.1 kcal/mol agrees well with experiment and shows that Mb weakens the Fe-CO bond by 5.8 kcal/mol; the calculations provide detailed atomistic insight into the origin of this effect. BDEs for Mb conformations with the R carbonmonoxy tertiary structure are on average 2.6 kcal/mol larger than those with the T deoxy tertiary structure, suggesting two functionally distinct allosteric states. This allostery is partly explained by the reduction in distal cavity steric crowding as Mb moves from its T to R tertiary structure.  相似文献   

13.
14.
The Heme Nitric oxide/OXygen binding (H-NOX) family of proteins have important functions in gaseous ligand signaling in organisms from bacteria to humans, including nitric oxide (NO) sensing in mammals, and provide a model system for probing ligand selectivity in hemoproteins. A unique vibrational feature that is ubiquitous throughout the H-NOX family is the presence of a high C-O stretching frequency. To investigate the cause of this spectroscopic characteristic, the Fe-CO and C-O stretching frequencies were probed in the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) using resonance Raman (RR) spectroscopy. Four classes of heme pocket mutants were generated to assess the changes in stretching frequency: (i) the distal H-bonding network, (ii) the proximal histidine ligand, (iii) modulation of the heme conformation via Ile-5 and Pro-115, and (iv) the conserved Tyr-Ser-Arg (YxSxR) motif. These mutations revealed important electrostatic interactions that dampen the back-donation of the Fe(II) d(π) electrons into the CO π* orbitals. The most significant change occurred upon disruption of the H-bonds between the strictly conserved YxSxR motif and the heme propionate groups, producing two dominant CO-bound heme conformations. One conformer was structurally similar to Tt H-NOX WT, whereas the other displayed a decrease in ν(C-O) of up to ~70 cm(-1) relative to the WT protein, with minimal changes in ν(Fe-CO). Taken together, these results show that the electrostatic interactions in the Tt H-NOX binding pocket are primarily responsible for the high ν(C-O) by decreasing the Fe d(π) → CO π* back-donation and suggest that the dominant mechanism by which this family modulates the Fe(II)-CO bond likely involves the YxSxR motif.  相似文献   

15.
J Ray  S W Englander 《Biochemistry》1986,25(10):3000-3007
Allosteric structure change in human hemoglobin was studied by hydrogen-tritium-exchange methods. The functional labeling method used takes advantage of the change in H-exchange rate at allosterically involved sites to selectively label, with tritium, H-exchange sites that are fast in one protein state and slow in another. The position of the labeled sites can then be located by the medium-resolution fragmentation-separation method. These methods reveal 5 allosterically sensitive, H-bonded, peptide NH's within the first 12 residues of the alpha chain. All five exchange with solvent protons at similar rates in deoxyhemoglobin (T form), and all shift to a new rate, about 30-fold faster, in the liganded protein (R) form. This indicates a decrease in structural stability at the alpha-chain N-terminus in going from the T to the R form, consistent with the loss of stabilizing interactions in that segment. The results indicate a loss of perhaps 2 kcal/mol in stabilization free energy and thus document a significant role for changes at the alpha-chain N-terminus in the allosteric transition.  相似文献   

16.
Respiratory proteins such as myoglobin and hemoglobin can, under oxidative conditions, form ferryl heme iron and protein-based free radicals. Ferryl myoglobin can safely be returned to the ferric oxidation state by electron donation from exogenous reductants via a mechanism that involves two distinct pathways. In addition to direct transfer between the electron donor and ferryl heme edge, there is a second pathway that involves "through-protein" electron transfer via a tyrosine residue (tyrosine 103, sperm whale myoglobin). Here we show that the heterogeneous subunits of human hemoglobin, the alpha and beta chains, display significantly different kinetics for ferryl reduction by exogenous reductants. By using selected hemoglobin mutants, we show that the alpha chain possesses two electron transfer pathways, similar to myoglobin. Furthermore, tyrosine 42 is shown to be a critical component of the high affinity, through-protein electron transfer pathway. We also show that the beta chain of hemoglobin, lacking the homologous tyrosine, does not possess this through-protein electron transfer pathway. However, such a pathway can be engineered into the protein by mutation of a specific phenylalanine residue to a tyrosine. High affinity through-protein electron transfer pathways, whether native or engineered, enhance the kinetics of ferryl removal by reductants, particularly at low reductant concentrations. Ferryl iron has been suggested to be a major cause of the oxidative toxicity of hemoglobin-based blood substitutes. Engineering hemoglobin with enhanced rates of ferryl removal, as we show here, is therefore likely to result in molecules better suited for in vivo oxygen delivery.  相似文献   

17.
We present well-resolved absorption spectra of biological molecules in the far-IR (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz-TDS). As an illustrative example we discuss the absorption spectra of benzoic acid, its monosubstitutes salicylic acid (2-hydroxy-benzoic acid), 3- and 4-hydroxybenzoic acid, and aspirin (acetylsalicylic acid) in the spectral region between 18 and 150 cm(-1). The spectra exhibit distinct features originating from low-frequency vibrational modes caused by intra- or intermolecular collective motion and lattice modes. Due to the collective origin of the observed modes the absorption spectra are highly sensitive to the overall structure and configuration of the molecules, as well as their environment. The THz-TDS procedure can provide a direct fingerprint of the molecular structure or conformational state of a compound.  相似文献   

18.
(a) Bacteriophage fd is a filamentous virus that has previously been well characterized. (b) Earlier work using point mutagenesis indicated that a lysine residue at position 48 in the major coat protein plays a crucial role in interacting with the DNA and governing the assembly into an intact virion. (c) In this study the sedimentation properties (sedimentation velocity and equilibrium) of wild-type fd and two mutants substituted at lysine-48 (K48Q and K48A) were compared. (d) Both mutants are similar to each other [Mr (19.5 ± 1.5) × 106] but somewhat bigger than the wild-type [Mr (15.1 ± 1.5) × 106]. The value for the wild-type is consistent with earlier published values. (e) By combining these data with sedimentation coefficient data, it is possible to compare the contour lengths and relative flexibilities of the mutants with those of the wild-type virion. (f) The mutants are shown hydrodynamically to have larger contour lengths (as also observed by electron microscopy): the ~20% difference in values obtained assuming rigid particle hydrodynamics with those obtained from electron microscopy is strongly suggestive of some difference in flexibility between the wild-type and mutants.  相似文献   

19.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

20.
Gao Y  Wang Y 《Biochemistry》2006,45(51):15654-15660
Methylglyoxal (MG) is an important glycating agent produced under physiological conditions. MG could react with DNA and proteins to generate advanced glycation end products. Human hemoglobin, the most abundant protein in blood cells, has not been systematically investigated as the target protein for methylglyoxal modification. Here we examined carefully, by using HPLC coupled with tandem mass spectrometry (LC-MS/MS), the covalent modifications of human hemoglobin induced by methylglyoxal. Our results revealed that hemoglobin could be modified by methylglyoxal, and the major form of modification was found to be the hydroimidazolone derivative of arginine residues. In addition, Arg-92 and Arg-141 in the alpha chain as well as Arg-40 and Arg-104 in the beta chain were modified, whereas two other arginine residues, that is, Arg-31 in the alpha chain and Arg-30 in the beta chain, were not modified. Semiquantitative measurement for adduct formation, together with the analysis of the X-ray structure of hemoglobin, showed that the extents of arginine modification were highly correlated with the solvent accessibilities of these residues. The facile formation of hydroimidazolone derivatives of arginine residues in hemoglobin by methylglyoxal at physiologically relevant concentrations suggested that this type of modification might occur in vivo. The unambiguous determination of the sites and extents of methylglyoxal modifications of arginines in hemoglobin provided a basis for understanding the implications of these modifications and for employing this type of hemoglobin modification as molecular biomarkers for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号