首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A carrot cell line (WCA1) resistant to Mtx has been isolatedand partially characterized. The IC50-Mtx is about thirty timeshigher in the resistant than in the parental line and the rateof uptake of Mtx is decreased 15 times. In addition the specificactivity of DHFR is about three times higher in the resistantline as compared to the parent Key words: Methotrexate resistance, Dihydrofolate reductase, Methotrexate uptake, Plant cell suspension culture, Daucus carota  相似文献   

2.
The expression of calmodulin mRNA and protein were measured during a growth cycle of carrot (Daucus carota L.) cells grown in suspension culture. A full-length carrot calmodulin cDNA clone isolated from a λgt10 library was used to measure steady-state calmodulin mRNA levels. During the exponential phase of culture growth when mitotic activity and oxidative respiration rates were maximal, calmodulin mRNA levels were 4- to 5-fold higher than they were during the later stages of culture growth, when respiration rates were lower and growth was primarily by cell expansion. Net calmodulin polypeptide synthesis, as measured by pulse-labeling in vivo with [35S]methionine, paralleled the changes in calmodulin steady-state mRNA level during culture growth. As a consequence, net calmodulin polypeptide synthesis declined 5- to 10-fold during the later stages of culture growth. The qualitative spectrum of polypeptides synthesized and accumulated by the carrot cells during the course of a culture cycle, however, remained largely unchanged. Calmodulin polypeptide levels, in contrast to its net synthesis, remained relatively constant during the exponential phases of the culture growth cycle and increased during the later stages of culture growth. Our data are consistent with increased calmodulin polypeptide turnover associated with periods of rapid cell proliferation and high levels of respiration.  相似文献   

3.
Treatment with ethephon increased the concentration of exogenous ethylene in Medicago sativa L. embryogenic cell suspension cultures (consisting of single cells, small cellular clumps and globular somatic embryos) and induced changes in the metabolism of phenolic substances, activities of peroxidase (EC 1.11.1.7) and caused significant suppression of suspension culture growth. Treatment with the ethylene-releasing substance, ethephon, resulted in a several-fold increase in phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) activity above the basal level and was accompanied by an elevated accumulation of phenolic acids (significant increase of methoxy-substituted acids). The majority of newly synthesised phenolic acids was incorporated into the fractions of glycosides and esters bound to the cell wall. Phenolic glycosides seemed to serve as a metabolic pool from which the phenolics were utilised during further culture. The increased activity of wall-bound ionic peroxidase after ethephon application correlated with the pronounced incorporation of ferulic acid in the cell walls. In contrast, the increased level of exogenous ethylene did not influence the growth of culture of more advanced embryos nor did it significantly alter phenylpropanoid metabolism.  相似文献   

4.
P. Perata  F. LoSchiavo  A. Alpi 《Planta》1988,173(3):322-329
The process of carrot (Daucus carota L.) somatic embryogenesis is highly sensitive to exogenously added ethanol, since 5 mM ethanol inhibits this process by 50%, whereas the growth of proliferating carrot cells is inhibited to the same extent by 20 mM ethanol. This is consistent with the fact that proliferating cultures produce ethanol and release it into the medium at concentrations up to 20 mM, whereas embryogenic culture medium contains less than 1 mM ethanol. Data are presented showing the influence of cell density and 2,4-dichlorophenoxyacetic acid on ethanol production and on the presence of an alcohol-dehydrogenase (EC 1.1.1.1.) inactivator in carrot embryos.Abbreviations ADH alcohol dehydrogenase - 6-BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - DTT dithiothreitol - FW fresh weight  相似文献   

5.
Preparatory experiments for the IML-1 (International Microgravity Laboratory) mission to be flown on the Space Shuttle in January, 1992, were performed on a 14 day flight on Biokosmos 9 (Kosmos 2044) in September 1989. The purpose of the experiment was to study the effect of weightlessness on protoplast regeneration. Problems with late access to the space vehicle meant that the newly isolated protoplasts from hypocotyl cells of rapeseed (Brassica napus L. cv Niklas) and suspension cultures of carrot (Daucus carota L, cv Nobo) had to be stored at 4 degrees C for 36 h prior to the launch of the biosatellite, in order to delay cell wall regeneration until the samples were in orbit. In the flight samples and the ground controls, a portion of the total number of protoplasts regenerated cell walls. The growth of flight rapeseed cells was only 56% compared to the ground control; the respective growth of carrot cells in orbit was 82% of the ground control. Analysis demonstrated that the peroxidase activity and the amount of protein was lower in the flight samples than in the ground controls. The number of different isoenzymes was also decreased in the flight samples. A 54% decrease in the production of cellulose was found in rapeseed, and a 71% decrease in carrot. Hemicellulose production was also decreased in the flight samples compared to the ground controls. Ultrastructural analysis of the cell aggregates from the protoplasts cultured in orbit, demonstrated that hydrolysis and disappearance of reserve starch occurred in the flight cell plastids. The mitochondria were more varied in appearance in the flight samples than in the ground control cells. An increased frequency of the occurrence of folds formed by the plasmalemma together with an increase in the degree of complexity of these folds was also observed. Fluorescence analysis showed a decrease of the calcium content in cell cultures under space flight compared to the ground controls. One general effect of the stay onboard the space vehicle was a retardation of the regeneration processes. Callus cultures obtained from the flight samples grew very slowly compared to callus regenerated from the ground controls, and two years after the Biokosmos 9 flight there appears to be no further growth in the samples exposed to microgravity. Callus cultures from the ground controls, however, continue to grow well. A simulation experiment for IML-l performed in January 1990 at ESTEC (European Space Technology Center), The Netherlands, has resulted in regenerated plants. These observations are discussed and compared to the results obtained on Biokosmos 9.  相似文献   

6.
A selenocystine-resistant carrot cell line, C-1, was isolated from a haploid carrot (Daucus carota) cell culture, HA. The C-1 variant takes up cystine, but not cysteine, more slowly than does HA. The selenocystine resistance is maintained in culture in the absence of selection and is expressed in regenerated plants. Results based on chromatographic separation of sulfur metabolites from cells fed with [35S]cystine suggest a block either in the uptake or reduction of cystine in the variant. Both lines can grow on cystine as sole sulfur source. Growth of the HA line on cystine suppressed the development of sulfate uptake capacity (Furner, Sung 1982 Proc Natl Acad Sci USA 79: 1149-1153), while cystine-grown C-1 cells have high levels of sulfate uptake capacity.

We suggest that the C-1 line, grown on cystine, accumulates an insufficient quantity of some sulfur metabolite, which is involved in the control of sulfate uptake, to suppress the uptake. C-1 grown on cystine is more sensitive than HA to growth inhibition by the sulfate analog selenate.

  相似文献   

7.
Most of the peroxidase activities from cultured cells of Marchantia polymorpha L. were found in the cell wall. The activities increased markedly after the beginning of stationary growth. Cytochemical examination using an electron microscope indicated that the peroxidase was localized in the layers of the cell wall. The increase of peroxidase released from the cells into the culture medium was closely correlated with the increase of the peroxidase level in the cell wall. The release of peroxidase seemed to be caused by fragmentation of the cell wall stripped from cell.  相似文献   

8.
In a submerged culture of a strain of carrot cells, cellularmorphology and the mode of cell division were greatly affectedby growth factor(s) added to the medium. In the presence of2,4-D, cells showed two-dimensional growth and often formedtetrad-like structure after a set of two divisions. The sequenceof events was observed microscopically. Orientation of cellgrowth changed after the first division and the second cellplate formed at an oblique angle to the first. When IAA wasadded, instead of 2,4-D, cells showed one-dimensional growthand developed to a filamentous form. (Received June 1, 1970; )  相似文献   

9.
Cells in a plant differentiate according to their positions and use cell-cell communication to assess these positions. Similarly, single cells in suspension cultures can develop into somatic embryos, and cell-cell communication is thought to control this process. The monoclonal antibody JIM8 labels an epitope on cells in specific positions in plants. JIM8 also labels certain cells in carrot embryogenic suspension cultures. We have used JIM8 and secondary antibodies coupled to paramagnetic beads to label and immunomagnetically sort single cells in a carrot embryogenic suspension culture into pure populations. Cells in the JIM8(+) population develop into somatic embryos, whereas cells in the JIM8(-) population do not form somatic embryos. However, certain cells in JIM8(+) cultures (state B cells) undergo asymmetric divisions, resulting in daughter cells (state C cells) that do not label with JIM8 and that sort to JIM8(-) cultures. State C cells are competent to form somatic embryos, and we show here that a conditioned growth medium from a culture of JIM8(+) cells allows state C cells in a JIM8(-) culture to go on and develop into somatic embryos. JIM8 labels cells in suspension cultures at the cell wall. Therefore, a cell with a role in cell-cell communication and early cell fate selection can be identified by an epitope in its cell wall.  相似文献   

10.
Protoplasts isolated from carrot cells were cultured in a chemically defined medium. The majority of them regenerated cell wall and underwent cell division. Cellulose synthesis started without a noticeable lag but the rate of deposition was very low during the initial stage. The degree of polymerization of cellulose was determined by viscosity measurement of the nitrated product. The cellulose formed in the early stage of the wall regeneration consisted mainly of low molecular weight glucan chains. Change in the average molecular weight of cellulose was found during the growth cycle of carrot cells in normal suspension culture.  相似文献   

11.
Mitra , J., Marion O. Mapes , and F. C. Steward . (Cornell U., Ithaca, New York.) Growth and organized development of cultured cells. IV. The behavior of the nucleus. Amer. Jour. Bot. 47(5) : 357—368. Illus. 1960.–The nuclei and the chromosomes of carrot cells have been examined at various stages throughout the following sequence: (1) growth of a tissue culture from a preformed explant of secondary phloem from the carrot root; (2) growth and multiplication of carrot cells freely suspended in a liquid medium; (3) growth and re-formation of organs (roots) and whole plants (including flowers) from cells in the freely suspended state. The cells of the carrot are normally diploid (2n = 18), the cells which develop in the explant are also diploid, and the cells of the re-formed organs, and even the flowers developed upon plants grown from cells, are also normal and diploid; normal meioses also occur. Nevertheless, the wide range in growth and form of the freely suspended cells is accompanied by a rich diversity of cytological conditions; these include tetraploid and highly polyploid nuclei which divide, haploidy and such chromosomal aberrations as di- and even tri-centric bridges. Two division figures showing chromosome numbers at different levels of ploidy were seen within the confines of one large cell, and, in another, 2 adjacent division figures were observed with chromosome numbers lower than diploid. Small thick-walled, densely protoplasmic cells divide to form bi- and tetra-nucleate conditions, and in a giant cell a highly multinucleate condition has been seen. Despite this, however, all the regenerated roots and plants yet examined are normally diploid. The implications of these events are discussed.  相似文献   

12.
Ethanol-induced injuries to carrot cells : the role of acetaldehyde   总被引:10,自引:3,他引:7       下载免费PDF全文
Perata P  Alpi A 《Plant physiology》1991,95(3):748-752
Carrot (Daucus carota L.) cell cultures show high sensitivity to ethanol since both unorganized cell growth and somatic embryogenesis are strongly inhibited by ethanol at relatively low concentrations (10-20 millimolar). The role of acetaldehyde on ethanol-induced injuries to suspension cultured carrot cells was evaluated. When ethanol oxidation to acetaldehyde is prevented by adding an alcohol-dehydrogenase (EC 1.1.1.1) inhibitor (4-methylpyrazole) to the culture medium, no ethanol toxicity was observed, even if ethanol was present at relatively high concentrations (40-80 millimolar). Data are also presented on the effects of exogenously added acetaldehyde on both carrot cell growth and somatic embryogenesis. We conclude that the observed toxic effects of ethanol cannot be ascribed to ethanol per se but to acetaldehyde.  相似文献   

13.
The human eosinophilic leukemia cell line, EoL-1, differentiated with butyrate as an eosinophilic cellular model was evaluated for peroxidase-dependent tyrosine nitration. Butyrate suppressed cell growth and induced eosinophilic granules in EoL-1 cells after 9 days of culture. Peroxidase activity was detected biochemically and histochemically from 3-day cultures and it increased in a time dependent manner. This peroxidase activity was inhibited by cyanide. Nitrotyrosine formation catalysed by peroxidase using hydrogen peroxide and nitrite was detected at a high level similar to that of mature eosinophils. However, no expression of eosinophil peroxidase (EPO) was detected by RT-PCR or immunocytochemistry. In contrast, the induction of myeloperoxidase (MPO) by butyrate was clearly detected by RT-PCR, Northern blot, and immunocytochemical staining. These results suggest that butyrate induces MPO rather than EPO in EoL-1 cells and that the formation of nitrotyrosine in butyrate-induced cells is dependent on MPO.  相似文献   

14.
One physiological characteristic of an Al-tolerant cell line(TA-1) selected from a cultured carrot cell line (SO-1) wasthe release of more citric acid into the medium than the parentalSO-1 line. Aluminum chloride was added to the media at a concentration,at which SO-1 as well as TA-1 could grow normally without inhibition.The amounts of citric acid and the soluble Al present in themedium were determined during the growth period. Much citricacid was released from TA-1 cells into the medium in the firsthalf of the culture period. At the time of maximum growth, theamount of citric acid in the medium of TA-1 cells was twiceas much as in the medium of SO-1 cells. The precipitates ofAl compound(s), which were formed in the medium by the additionof AlCl3 as the Al source, became soluble as culture proceeded,depending on the amount of citric acid present in the medium. (Received September 3, 1983; Accepted May 9, 1984)  相似文献   

15.
Asymmetric hybrid plants were obtained from fused protoplasts of a monocotyledon (Oryza sativa L.) and a dicotyledon (Daucus carota L.). X-ray-irradiated protoplasts isolated from a cytoplasmic malesterile (cms) carrot suspension culture were fused with iodoacetoamide-treated protoplasts isolated from a 5-methyltryptophan (5MT)-resistant rice suspension culture by electrofusion. The complementary recovered cells divided and formed colonies, which were then cultivated on regeneration medium supplemented with 25mg/l 5MT to eliminate any escaped carrot cells. Somatic hybrids were regenerated from 5 of the 5MT-resistant colonies. The morphologies of most of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells possessed 20–22 chromosomes and were resistant to 5MT. An isozyme analysis revealed that several regenerated plants had the peroxidase isozyme patterns of both parents. A Southern hybridization analysis with non-radioactively labelled DNA fragments of the rgp1 gene showed that regenerated plants had hybridizing bands from both rice and carrot. Chloroplast (cp) and mitochondrial (mt) DNAs were also analyzed by Southern hybridization by using several probes. CpDNA patterns of the regenerated plants were indistinguishable from those of the carrot parent. However 1 of the regenerated plants had a novel band pattern of mtDNA that was not detected in either of the parents, indicating a possible recombination of mitochondrial genomes.  相似文献   

16.
《Phytochemistry》1987,26(7):1919-1923
Addition of calcium ionophore A23187 or dibutyryl cyclic AMP (dBcAMP) to carrot (Daucus carota L.) cell culture induced the production of 6-methoxymellein, a phytoalexin of carrot, in a dose-dependent manner. Several reagents known to suppress the cytoplasmic calcium concentration appreciably inhibited elicitor-promoted phytoalexin production in carrot cells. The addition of elicitor to the carrot culture caused a rapid increase in the intracellular level of cyclic AMP. Treatments of the cells with theophylline or cholera toxin stimulated the biosynthesis of 6-methoxymellein even in the absence of elicitor. These observations suggested that Ca2+ and cyclic AMP participate as second messengers in the regulation of 6-methoxymellein production in cultured carrot cells. Addition of verapamil to carrot cell culture markedly inhibited 6-methoxymellein production when it was added within 30 min after elicitor-treatment of the cells, but no inhibitory effect was observed after 60 min. The results suggest that these messengers function in an early stage of the elicitation process. Carrot cells which were previously treated with verapamil accumulated only small amounts of 6-methoxymellein following the addition of dBcAMP. In contrast, cells incubated initially with dBcAMP accumulated the phytoalexin at levels comparable to the control when verapamil was added to the culture.  相似文献   

17.
Sung ZR 《Plant physiology》1981,68(1):261-264
Cultured carrot cells grow as unorganized callus tissue in medium containing auxin. Upon removal of the auxin from the medium, they grow in an organized manner and differentiate into embryos. In the normal cell line, W001C, the callus growth can be inhibited by cycloheximide, but the embryonic growth cannot. A variant cell line, WCH105, whose callus growth is resistant to cycloheximide, was isolated. The mechanism of cycloheximide resistance in embryos of both lines and in WCH105 callus was found to be cycloheximide inactivation. In addition to auxin, bromodeoxyuridine can also promote callus growth in carrot culture. Callus cultures maintained by bromodeoxyuridine behave the same as do those maintained by auxin. WCH105 callus is resistant, whereas W001C callus is sensitive to cycloheximide inhibition. Except for the onset of embryogenesis, cycloheximide inactivation is expressed throughout the embryo developmental stages up to the plantlets. These results suggest that cycloheximide inactivation is a function expressed in the differentiated, but not in the undifferentiated, tissues.  相似文献   

18.
Carrot cell cultures were used to study the dynamics of calmodulin protein levels, calmodulin methylation, and calmodulin-binding proteins during plant growth and development. Comparisons of proliferating and nonproliferating wild carrot cells show that, while calmodulin protein levels does not vary significantly, substantial variation in post-translational methylation of calmodulin on lysine-115 is observed. Calmodulin methylation is low during the lag and early exponential stages, but increases substantially as exponential growth proceeds and becomes maximal in the postexponential phase. Unmethylated calmodulin quickly reappears within 12 h of reinoculation of cells into fresh media, suggesting that the process is regulated according to the cell growth state. Calmodulin and calmodulin-binding proteins were also analyzed during the formation and germination of domestic carrot embryos in culture. Neither calmodulin methylation nor calmodulin protein levels varied significantly during somatic embryogenesis. However, upon germination of embryos, the level of calmodulin protein doubled. By calmodulin overlay analysis, we have detected a major 54,000 M(r) calmodulin-binding protein that also increased during embryo germination. This protein was purified from carrot embryo extracts by calmodulin-Sepharose chromatography. Overall, the data suggest that calmodulin methylation is regulated depending upon the state of cell growth and that calmodulin and its target proteins are modulated during early plant development.  相似文献   

19.
Cadmium (Cd), similarly to other heavy metals, inhibits plant growth. We have recently showed that Cd(2+) either stimulates (1-4 microM) or inhibits (>/= 6 microM) growth of soybean (Glycine max L.) cells in suspension culture (Sobkowiak & Deckert, 2003, Plant Physiol Biochem. 41: 767-72). Here, soybean cell suspension cultures were treated with various concentrations of Cd(2+) (1-10 microM) and the following enzymes were analyzed by native electrophoresis: superoxide dismutase (SOD), catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APOX). We found a significant correlation between the cadmium-induced changes of soybean cell culture growth and the isoenzyme pattern of the antioxidant enzymes. The results suggest that inhibition of growth and modification of antioxidant defense reactions appear in soybean cells when Cd(2+) concentration in culture medium increases only slightly, from 4 to 6 microM.  相似文献   

20.
The initial step in tumor formation by Agrobacterium tumefaciens is the site-specific attachment of the bacteria to plant cells. A similar attachment to plant tissue culture cells has been observed. Binding to carrot suspension culture cells was not dependent on the presence of divalent cations and was not inhibited by the addition of mannose, α-methyl mannoside, galactose, arabinose, glucosamine, 2-deoxyglucose, or 0.25 molar NaCl to the culture medium. The ability of the carrot cells to bind A. tumefaciens was markedly reduced by elution of the cells with dilute detergent or CaCl2 or by incubation of the cells with proteolytic enzymes. The carrot cells were not killed by these treatments and recovered the ability to bind A. tumefaciens within 3 to 6 hours. A. tumefaciens did not bind to carrot cells which had been induced to form embryos (AG Matthysse, RHG Gurlitz 1982 Physiol Plant Pathol 21: 381-387). A comparison of the peptides eluted from embryos and from uninduced cells using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there were several changes in extractable polypeptides after embryo induction. One or more of the polypeptides present before embryo induction and absent from embryos may be involved in the binding of A. tumefaciens to the carrot cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号