首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. alpha-L-Fucosidase was purified ca 10,889-fold to homogeneity from Penaeus monodon, with a final spec. act. of 31,250 U/mg of protein. 2. By using SDS-polyacrylamide gel electrophoresis, the monomers of shrimp alpha-L-fucosidase were discovered to have mol. wts of 63,000 and those of human placental enzyme, 46,000 and 20,000. Since the active shrimp alpha-L-fucosidase was found to have a mol. wt of 233,000 by Superose 12 FPLC, it was concluded that the purified shrimp enzyme was tetrameric. 3. In contrast to the discovery of thermolability with human placental alpha-L-fucosidase, the shrimp enzyme was found to be stable to heating at 65 degrees C for 10 min. 4. The shrimp alpha-L-fucosidase has an isoelectric point (pI) of 8.5, but the human placental enzyme has a pI of 4.0. The shrimp enzyme was sialyated. 5. The shrimp alpha-L-fucosidase has a pH optimum at 5.5 and its Km was 22.2 microM with 4-methyl-umbelliferyl-alpha-L-fucopyranoside as substrate. The human enzyme has a broad pH optimum between 5.0 and 6.5.  相似文献   

2.
1. Alkaline phosphatases were purified from human placenta, bovine milk, shrimp and clam with a final spec. act. of 67,000, 32,000, 22,000 and 15,000 U/mg of protein respectively. 2. The alkaline phosphatase from Meretrix lusoria is unique with its thermostability at 65 degrees C for 30 min; whereas the remaining enzymes studied, including the human placental alkaline phosphatase, are inactivated and have negligible activities. 3. The alkaline phosphatase from Penaeus monodon can be differentiated by its pH optimum at 9.0; the remaining enzymes studied have their optimal pH at 10.0. 4. The alkaline phosphatases from shrimp and clam are proposed to be applied as "reporters" in the study of mammalian cells.  相似文献   

3.
The alkaline phosphatase from KB cells was purified, characterized, and compared to placental alkaline phosphatase, which it resembles immunologically. Two nonidentical nonomeric subunits of the KB phosphatase were found. The two subunits, which have apparent molecular weights of 64,000 and 72,000, can be separated on polyacrylamide gels containing sodium dodecyl sulfate. The Mr = 64,000 KB subunit appears to be identical in protein structure to the monomer of placental alkaline phosphatase. The Mr = 72,000 KB subunit, while differing in the NH2-terminal amino acid, appears also to be very similar to the placental alkaline phosphatase monomer. Both KB phosphatase subunits bind (32P)phosphate, and bind to Sepharose-bound anti-placental alkaline phosphatase. Native KB phosphatase is identical to the placental isozyme in isoelectric point, pH optimum, and inhibition by amino acids, and has a very similar peptide map. The data presented support the hypothesis that the Mr = 64,000 KB phosphatase subunit may the the same gene product as the monomer of placental alkaline phosphatase. This paper strengthens the evidence that the gene for this fetal protein, normally repressed in all cells but placenta, is derepressed in the KB cell line. In addition, this paper presents the first structural evidence that there are two different subunit proteins comprising the placental-like alkaline phosphatase from a human tumor cell line.  相似文献   

4.
1. The sialidase purified from the hepatopancreas of Penaeus japonicus is able to bind the acidic beta-galactosidase in vitro. No protective protein, Mr 32,000, was detected in either purified enzyme preparation. 2. The specific activity of the isolated sialidase is 55.0 mU/mg of protein. After polyacrylamide gel electrophoresis under denaturing conditions, the purified shrimp enzyme was found to consist of monomers of Mr 32,000. 3. The sialidase from shrimp has an isoelectric point (pI) of 4.6 +/- 0.1. 4. The shrimp enzyme has the pH optimum at 5.0 and its Km was 5.5 microM with 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid as substrate. The enzyme activity was inhibited by either Hg2+ or Cu2+ ions.  相似文献   

5.
Human liver alkaline phosphatase (AP) has been purified to homogeneity. The enzyme has a molecular weight of 150,000 in its native state and consists of two identical subunits of Mr 75,000. After treatment with endoglycosidase F the molecular weight is reduced to 50,000 indicating a high degree of glycosylation. The amino-terminal sequence up to 22 residues was found to be Leu-Val-Pro-Glu-Lys-Glu-Lys-Asp-Pro-Lys-Tyr-(Ala)-Arg-Asp-Gln-Ala-Gln-?- Thr-Leu-Lys-Tyr. The amino-terminal portions of human and bovine liver AP are identical. The amino termini of the human liver and human placental AP isozymes have appreciable homology. Conformationally the amino termini are very similar.  相似文献   

6.
Alkaline phosphatase activity in human placental cells transformed by a tsA mutant of simian virus 40 (SV40) can be greatly induced by growing these cells at 40 degrees C, the temperature at which the tsA transformants regain their nontransformed phenotype. The induction of alkaline phosphatase in these cells requires the synthesis of both RNA and protein. The induced alkaline phosphatase from a SV40 tsA30 mutant-transformed term placental cell line (TPA30-1) was purified, characterized, and compared with alkaline phosphatase from term placenta and first trimester placenta. The form of alkaline phosphatase found in TPA30-1 cells differs from the phosphatase of term placenta in physiochemical and immunological properties. The TPA30-1 phosphatase is, however, indistinguishable from the alkaline phosphatase of human first trimester placenta by several criteria, including electrophoretic mobility, apparent molecular weight (Mr = 165,000), size of monomeric subunit (Mr = 77,000), heat lability, and sensitivity to inhibition by amino acids and EDTA. In addition, alkaline phosphatase from both TPA30-1 cells and first trimester placenta can be inactivated by antiserum to liver alkaline phosphatase but not by antiserum to term placental alkaline phosphatase. The induction of first trimester phosphatase in cells derived from term placenta provides a system for the study of alkaline phosphatase gene regulation in human placenta.  相似文献   

7.
1. Liver and bone alkaline phosphatase isoenzymes were solubilized with the zwitterionic detergent sulphobetaine 14, and purified to homogeneity by using a monoclonal antibody previously raised against a partially-purified preparation of the liver isoenzyme. Both purified isoenzymes had a specific activity in the range 1100-1400 mumol/min per mg of protein with a subunit Mr of 80,000 determined by SDS/polyacrylamide gel electrophoresis. Butanol extraction instead of detergent solubilization, before immunoaffinity purification of the liver enzyme, resulted in the same specific activity and subunit Mr. The native Mr of the sulphobetaine 14-solubilized enzyme was consistent with the enzyme being a dimer of two identical subunits and was higher than that of the butanol-extracted enzyme, presumably due to the binding of the detergent micelle. 2. Pure bone and liver alkaline phosphatase were used to raise further antibodies to the two isoenzymes. Altogether, 27 antibody-producing cell lines were cloned from 12 mice. Several of these antibodies showed a greater than 2-fold preference for bone alkaline phosphatase in the binding assay used for screening. No antibodies showing a preference for liver alkaline phosphatase were successfully cloned. None of the antibodies showed significant cross-reaction with placental or intestinal alkaline phosphatase. Epitope analysis of the 27 antibodies using liver alkaline phosphatase as antigen gave rise to six groupings, with four antibodies unclassified. The six major epitope groups were also observed using bone alkaline phosphatase as antigen. 3. Serum from patients with cholestasis contains soluble and particulate forms of alkaline phosphatase. The soluble serum enzyme had the same size and charge as butanol-extracted liver enzyme on native polyacrylamide-gel electrophoresis. Cellulose acetate electrophoresis separated the soluble and particulate serum alkaline phosphatases as slow- and fast-moving forms respectively. In the presence of sulphobetaine 14 all the serum enzyme migrated as the slow-moving form on cellulose acetate electrophoresis. Monoclonal anti-(alkaline phosphatase) immunoadsorbents did not bind the particulate form of alkaline phosphatase in cholestatic serum but bound the soluble form. In the presence of sulphobetaine 14 all the cholestatic serum alkaline phosphatase bound to the immunoadsorbents. 4. The electrophoretic and immunological data are consistent with both particulate and soluble forms of alkaline phosphatase in cholestatic serum being derived from the hepatocyte membrane.  相似文献   

8.
Alkaline phosphatase in a wide range of tissues has been shown to be anchored in the membrane by a specific interaction with the polar head group of phosphatidylinositol. It has previously been suggested that the production of low Mr alkaline phosphatase during the commonly used butanol extraction procedure may result from the activation of an endogenous phosphoinositide-specific phospholipase C which removes the 1,2-diacylglycerol responsible for membrane anchoring. This conversion process was investigated in greater detail with human placenta used as the source of alkaline phosphatase. Mr and hydrophobicity of the alkaline phosphatase were determined by gel filtration on TSK-250 and partitioning in Triton X-114, respectively. Alkaline phosphatase extracted from human placental particulate fraction with butanol at pH 5.4 or released by incubation with Staphylococcus aureus phosphatidylinositol-specific phospholipase C produced a form of alkaline phosphatase of Mr approx. 170,000 and relatively low hydrophobicity. By contrast, the butanol extract prepared at pH 8.3 was an aggregated form of Mr approx. 600,000 and was relatively hydrophobic. The effect of a variety of inhibitors and activators on the amount of low Mr alkaline phosphatase produced during butanol extraction revealed that it was a Ca2+- and thiol-dependent process. Proteinase inhibitors had no effect. [3H]Phosphatidylinositol hydrolysis by the particulate fraction, unlike low Mr alkaline phosphatase production, was relatively sensitive to heat inactivation, indicating that the phosphoinositide-specific phospholipases C from cytosol and lysosomes were unlikely to be responsible for conversion. A butanol-stimulated activity which removed the [3H]myristic acid from the variant surface glycoprotein ( [3H]mfVSG) of Trypanosoma brucei was detectable in the human placental particulate fraction. Since this activity was acid active, Ca2+- and thiol-dependent and relatively heat stable, it may be the same as that responsible for production of low Mr alkaline phosphatase. The only 3H-labelled product identified was phosphatidic acid, suggesting that the [3H]mfVSG-cleaving activity is a phospholipase D. These data strongly support the proposal that production of low Mr alkaline phosphatase during butanol extraction is an autolytic process occurring as the result of an endogenous phospholipase. However, they also suggest that the lysosomal and cytosolic phosphoinositide-specific phospholipases C that have previously been described in many mammalian tissues are not responsible for this process.  相似文献   

9.
The biosynthesis and post-translational modification of placental alkaline phosphatase were studied in human choriocarcinoma cells, JEG-3. Pulse-chase experiments with [35S]methionine demonstrated that placental alkaline phosphatase was synthesized as a major precursor form with Mr 63,000, which was then converted to a mature form with Mr 66,000, by processing of its N-linked oligosaccharides from the high-mannose type to the complex type. In addition, the two forms of the protein were found to be modified by a glycophospholipid, components of which were characterized by metabolic incorporation into placental alkaline phosphatase of 3H-labeled compounds such as myo-inositol, palmitic acid, stearic acid, mannose, glucosamine, and ethanolamine. When placental alkaline phosphatase labeled with these compounds was treated with phosphatidylinositol-specific phospholipase C or papain, the phospholipase C removed only the 3H-labeled fatty acids, whereas papain, that is known to cleave the C-terminal region, released all the radioactive glycolipid components including [3H]ethanolamine. More detailed analysis with shorter pulse-chase experiments demonstrated that placental alkaline phosphatase was primarily synthesized as a form with Mr 64,500 which was not yet labeled with [3H]palmitic acid. This form was converted by papain digestion to the above-mentioned major precursor with Mr 63,000. Taken together, these results suggest that placental alkaline phosphatase is initially synthesized as the precursor with Mr 64,500, which is immediately converted to the intermediate form with Mr 63,000 by simultaneously occurring proteolysis of the C terminus and replacement by the glycophospholipid, and finally to the mature form with Mr 66,000 by terminal glycosylation of its N-linked oligosaccharides. The glycophospholipid thus attached is considered to function as the membrane-anchoring domain of placental alkaline phosphatase.  相似文献   

10.
Hydrolytic activities of human alkaline phosphatase isozymes were investigated using phosphatidases with various fatty acyl chains (egg phosphatidate and dioleoyl, distearoyl, dipalmitoyl, dimyristoyl and dilauroyl phosphatidates). In the presence of sodium deoxycholate, purified human placental and intestinal alkaline phosphatases hydrolyzed all the phosphatidates examined. The hydrolytic activity was maximal in the presence of 10 g/l sodium deoxycholate. Of the phosphatidates, dilauroyl phosphatidate was the best substrate. Using the same unit of the enzyme, the phosphatidate hydrolytic activity of placental alkaline phosphatase was 2- to 3-times higher than that of the intestinal enzyme. In contrast, liver alkaline phosphatase did not hydrolyze phosphatidates with long fatty acyl chains (C16-18) even in the presence of sodium deoxycholate. The liver enzyme hydrolyzed dimyristoyl and dilauroyl phosphatidates very slowly. These results show that the phosphatidates with long fatty acyl chains were useful to differentiate placental and intestinal alkaline phosphatases from the liver enzyme, and suggest that the former enzymes play a different physiological role from the liver enzyme.  相似文献   

11.
1. Kinetic and physical parameters of purified alkaline phosphatase from Echinococcus multilocularis metacestodes, livers of infected gerbils and control animals were determined. 2. Km value for p-nitrophenyl phosphate was about 0.05 +/- 0.02 mM for the three enzymes. 3. Vmax values were 357 +/- 67 nmol/min/mg proteins for metacestode enzyme, and 6.7 +/- 1.1 and 6.7 +/- 0.8 nmol/min/mg proteins for liver enzyme of infected and control animals, respectively. 4. Mr and pI were different for the parasite and hepatic enzyme. 5. The parasite enzyme was less sensitive to the elevation of temperature than hepatic enzyme. 6. The isatin inhibition was a competitive inhibition type for parasite and uncompetitive type for host liver enzyme.  相似文献   

12.
Alkaline phosphatase (E.C.3.1.3.1.) has been used as a marker for embryonal carcinoma cells which constitute the multipotential stem cells of the mouse teratoma. Studies by other investigators based on kinetics of thermal inactivation and L-phenylalanine inhibition have shown that the alkaline phosphatase of the teratoma differs from the mouse intestinal and liver isozymes, but resembles the isozymes of kidney and placenta. Since functional characterization of nonpurified enzymes is not the most accurate means for distinguishing different molecular forms of an enzyme, we have partially purified the enzymes from the ascitic (embryoid body) and solid tumor forms of the OTT-6050 teratoma line, and utilized the technique of electrophoresis in polyacrylamide gels to compare the teratoma enzyme with isozymes from kidney and placenta. Covalent 32PO4-labeling of the alkaline phosphatases and polyacrylamide gel electrophoresis in sodium dodecylsulfate was also used to compare the subunit molecular weights of the enzymes. The results indicate that the mouse teratoma enzyme is distinct from the kidney and placental isozymes. Since histochemical studies have localized the enzyme to the stem cell population of the teratoma, the results imply that stem cell alkaline phosphatase is a distinct isozyme. The embryoid bodies contain a second alkaline phosphatase which may correspond to the placental isozyme. This enzyme may be attributed to the outer cell layer of embryoid bodies of the ascitic tumor, since this cell type histochemically demonstrates alkaline phosphatase activity.  相似文献   

13.
Antiserum raised in rabbits sensitized with purified human placental alkaline phosphatase of the rare FD phenotype was absorbed on purified FF phenotype enzyme conjugated to Sepharose. The absorbed antiserum was not able to bind to the F-variant, but was still capable of binding to the D-variant enzyme, determined by electrophoretic retardation and gel filtration. It therefore appears that some allelic variants of placental phosphatase differ in their antigenic structure.  相似文献   

14.
Two-dimensional polyacrylamide gel analyses of purified human and monkey liver phenylalanine hydroxylase reveal that the enzyme consists of two different apparent molecular weight forms of polypeptide, designated H (Mr = 50,000) and L (Mr = 49,000), each containing three isoelectric forms. The two apparent molecular weight forms, H and L, represent the phosphorylated and dephosphorylated forms of phenylalanine hydroxylase, respectively. After incubation of purified human and monkey liver enzyme with purified cAMP-dependent protein kinase and [gamma-32P]ATP, only the H forms contained 32P. Treatment with alkaline phosphatase converted the phenylalanine hydroxylase H forms to the L forms. The L forms but not the H forms could be phosphorylated on nitrocellulose paper after electrophoretic transfer from two-dimensional gels. Phosphorylation and dephosphorylation of human liver phenylalanine hydroxylase is not accompanied by significant changes in tetrahydrobiopterin-dependent enzyme activity. Peptide mapping and acid hydrolysis confirm that the apparent molecular weight heterogeneity (and charge shift to a more acidic pI) in human and monkey liver enzyme results from phosphorylation of a single serine residue. However, phosphorylation by the catalytic subunit of cAMP-dependent protein kinase does not account for the multiple charge heterogeneity of human and monkey liver phenylalanine hydroxylase.  相似文献   

15.
The commercially available human placental alkaline phosphatase was purified to near homogeneity. Multiple bands of the purified enzyme were resolved in the polyacrylamide gel. The number of bands in the gel was reduced after the enzyme was treated with neuraminidase.  相似文献   

16.
The complete amino acid sequence of the precursor and mature forms of human placental alkaline phosphatase have been inferred from analysis of a cDNA. A near full-length PLAP cDNA (2.8 kilobases) was identified upon screening a bacteriophage lambda gt11 placental cDNA library with antibodies against CNBr fragments of the enzyme. The precursor protein (535 amino acids) displays, after the start codon for translation, a hydrophobic signal peptide of 21 amino acids before the amino-terminal sequence of mature placental alkaline phosphatase. The mature protein is 513 amino acids long. The active site serine has been identified at position 92, as well as two putative glycosylation sites at Asn122 and Asn249 and a highly hydrophobic membrane anchoring domain at the carboxyl terminus of the protein. Significant homology exists between placental alkaline phosphatase and Escherichia coli alkaline phosphatase. Placental alkaline phosphatase is the first eukaryotic alkaline phosphatase to be cloned and sequenced.  相似文献   

17.
The active site of bovine intestinal alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) was labeled with [32P]Pi, a radioactive CNBr peptide was isolated and the amino acid sequence was determined. The sequence of the active-site peptide has limited homology (26%) with the active-site sequence of Escherichia coli alkaline phosphatase except for the ten residues immediately flanking the active-site serine (70%). A possible amino acid sequence deduced from the amino acid composition of an active-site tryptic peptide from human placental alkaline phosphatase is very similar to the bovine intestinal active-site sequence. The amino-terminal sequence of bovine intestinal alkaline phosphatase is homologous (69%) with the human placental enzyme but not with the E. coli phosphatase.  相似文献   

18.
A rapid and efficient immunoaffinity purification procedure has been developed for human placental choline acetyltransferase (ChAT). Using this procedure, human placental ChAT was purified to homogeneity with high recovery of enzyme activity (50-60%). Purified ChAT was used to raise a monospecific anti-human ChAT polyclonal antibody in rabbits. A comparison of the physical properties of ChAT was made between the enzymes purified from human brain and human placenta. Only one form of the enzyme exists in either tissue, having identical molecular weights of 68,000 and a single apparent pI of 8.1. A more detailed comparison of the two enzymes using peptide mapping and epitope mapping indicates identity between the brain and placental enzymes.  相似文献   

19.
When membrane-bound human liver alkaline phosphatase was treated with a phosphatidylinositol (PI) phospholipase C obtained from Bacillus cereus, or with the proteases ficin and bromelain, the enzyme released was dimeric. Butanol extraction of the plasma membranes at pH 7.6 yielded a water-soluble, aggregated form that PI phospholipase C could also convert to dimers. When the membrane-bound enzyme was solubilized with a non-ionic detergent (Nonidet P-40), it had the Mr of a tetramer; this, too, was convertible to dimers with PI phospholipase C or a protease. Butanol extraction of whole liver tissue at pH 6.6 and subsequent purification yielded a dimeric enzyme on electrophoresis under nondenaturing conditions, whereas butanol extraction at pH values of 7.6 or above and subsequent purification by immunoaffinity chromatography yielded an enzyme with a native Mr twice that of the dimeric form. This high molecular weight form showed a single Coomassie-stained band (Mr = 83,000) on electrophoresis under denaturing conditions in sodium dodecyl sulfate, as did its PI phospholipase C cleaved product; this Mr was the same as that obtained with the enzyme purified from whole liver using butanol extraction at pH 6.6. These results are highly suggestive of the presence of a butanol-activated endogenous enzyme activity (possibly a phospholipase) that is optimally active at an acidic pH. Inhibition of this activity by maintaining an alkaline pH during extraction and purification results in a tetrameric enzyme. Alkaline phosphatase, whether released by phosphatidylinositol (PI) phospholipase C or protease treatment of intact plasma membranes, or purified in a dimeric form, would not adsorb to a hydrophobic medium. PI phospholipase C treatment of alkaline phosphatase solubilized from plasma membranes by either detergent or butanol at pH 7.6 yielded a dimeric enzyme that did not absorb to the hydrophobic medium, whereas the untreated preparations did. This adsorbed activity was readily released by detergent. Likewise, alkaline phosphatase solubilized from plasma membranes by butanol extraction at pH 7.6 would incorporate into phosphatidylcholine liposomes, whereas the enzyme released from the membranes by PI phospholipase C would not incorporate. The dimeric enzyme purified from a butanol extract of whole liver tissue carried out at pH 6.6 did not incorporate. We conclude that PI phospholipase C converts a hydrophobic tetramer of alkaline phosphatase into hydrophilic dimers through removal of the 1,2-diacylglycerol moiety of phosphatidylinositol. Based on these and others' findings, we devised a model of alkaline phosphatase's conversion into its various forms.  相似文献   

20.
Spermidine synthase was purified to apparent homogeneity from human spleens (8700-fold) by affinity chromatography. The native enzyme was composed of two subunits of identical Mr (35,000) and showed an apparent Mr of 62,000 in pore-gradient gel electrophoresis. Its pI was 5.1, Spermine synthase was purified to apparent homogeneity from placenta (5300-fold) and from kidney (4600-fold). The native enzyme was composed of two subunits of identical Mr (45,000) and showed an apparent Mr of 78,000 in pore-gradient gel electrophoresis. In isoelectric focusing it revealed two bands, with pI values of 4.9 and 5.0. Both synthases were present in all human tissues studied, but revealed a clear tissue-specific pattern. Mouse antisera against spermidine synthase revealed only one band, of Mr 35,000, in all purified enzyme preparations and in crude human tissue extracts in immunoblotting. Antisera against spermine synthase showed an immunoreactive band corresponding to the Mr of the subunit of spermine synthase. These antisera did not indicate any cross-reactivity in immunoblotting. Thus spermine synthase and spermidine synthase do not share homologous antigenic sites and are totally different proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号