首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of K(v) channels is well established, it is not clear if such a cytoplasmic gate exists in all K(+) channels. Some studies on large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker "ball" peptide (BP) on BK channels with either K(+) or Rb(+) as the permeant ion. When tested in K(+) solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb(+) replaced K(+) as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these K(v) channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating.  相似文献   

2.
Large-conductance voltage- and Ca(2+)-dependent K(+) (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the "gating ring"), which confers sensitivity to intracellular Ca(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca(2+)- and Mg(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca(2+)-binding site (the "calcium bowl") reduced the Ca(2+) and abolished the Mg(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca(2+)-binding site and that Mg(2+) can bind to the calcium bowl with less affinity than Ca(2+). Dynamic light scattering analysis revealed a reversible Ca(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel.  相似文献   

3.
Oxysterols, oxidization products of cholesterol, are regarded as bioactive lipids affecting various physiological functions. However, little is known of their effects on ion channels. Using inside-out patch clamp recording, we found that naturally occurring side-chain oxidized oxysterols, 20S‑hydroxycholesterol, 22R‑hydroxycholesterol, 24S‑hydroxycholestero, 25‑hydroxycholesterol, and 27‑hydroxycholesterol, induced current reduction of large-conductance Ca2+- and voltage-activated K+ (slo1 BK) channels heterologously expressed in HEK293T cells. In contrast with side-chain oxidized oxysterols, naturally occurring ring oxidized ones, 7α‑hydroxycholesterol and 7‑ketocholesterol were without effect. By using 24S‑hydroxycholesterol (24S‑HC), the major brain oxysterol, we explored the inhibition mechanism. 24S‑HC inhibited Slo1 BK channels with an IC50 of ~2 μM, and decreased macroscopic current by ~60%. This marked current decrease was accompanied by a rightward shift in the conductance-voltage relationship and a slowed activation kinetics, with the deactivation kinetics unaltered. Furthermore, the membrane sterol scavenger γ‑cyclodextrin was found to rescue slo1 BK channels from the inhibition, implicating that 24S-HC may be intercalated into the plasma membrane to affect the channel. These findings unveil a novel physiological importance of oxysterols from a new angle that involves ion channel regulation.  相似文献   

4.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.  相似文献   

5.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition.  相似文献   

6.
The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 microM. Increasing Ca2+(i) from 0.03 to 1,024 microM shifted the voltage for half maximal activation (V(1/2)) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) < or = 0.03 microM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (approximately 0 through 1,024 microM), voltage (+80 to -80 mV), and Po (10(-4) to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.  相似文献   

7.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

8.
24S-hydroxycholesterol (HC) is most abundant oxysterols in the brain, passes through blood brain barrier, and is therefore regarded as an intermediary for brain cholesterol elimination. We reported that large-conductance Ca2+- and voltage-activated K+ (slo1 BK) channels are suppressed by this oxysterol, which is presumably intercalated into cell membrane to access the outer surface of the channel. Such an outer approach would make it difficult to interact with the inner, ion-conducting part of the channel. The present findings showed that 24R-HC, the racemic counterpart of 24S-HC, also suppressed slo1 BK channel but in a different voltage-dependent manner. There was a difference between the effects of the two enantiomers on activation kinetics but not on deactivation kinetics. It is suggested that the chirality contributes to the efficacy of channel blockers that act from outer lipophilic parts of channels, as with those which act on the inner, ion-permeable surface.  相似文献   

9.
10.
Over the past few years, it has become clear that an important mechanism by which large-conductance Ca2+-activated K+ channel (BKCa) activity is regulated is the tissue-specific expression of auxiliary β subunits. The first of these to be identified, β1, is expressed predominately in smooth muscle and causes dramatic effects, increasing the apparent affinity of the channel for Ca2+ 10-fold at 0 mV, and shifting the range of voltages over which the channel activates −80 mV at 9.1 μM Ca2+. With this study, we address the question: which aspects of BKCa gating are altered by β1 to bring about these effects: Ca2+ binding, voltage sensing, or the intrinsic energetics of channel opening? The approach we have taken is to express the β1 subunit together with the BKCa α subunit in Xenopus oocytes, and then to compare β1''s steady state effects over a wide range of Ca2+ concentrations and membrane voltages to those predicted by allosteric models whose parameters have been altered to mimic changes in the aspects of gating listed above. The results of our analysis suggest that much of β1''s steady state effects can be accounted for by a reduction in the intrinsic energy the channel must overcome to open and a decrease in its voltage sensitivity, with little change in the affinity of the channel for Ca2+ when it is either open or closed. Interestingly, however, the small changes in Ca2+ binding affinity suggested by our analysis (Kc 7.4 μM → 9.6 μM; Ko = 0.80 μM → 0.65 μM) do appear to be functionally important. We also show that β1 affects the mSlo conductance–voltage relation in the essential absence of Ca2+, shifting it +20 mV and reducing its apparent gating charge 38%, and we develop methods for distinguishing between alterations in Ca2+ binding and other aspects of BKCa channel gating that may be of general use.  相似文献   

11.
12.
Although it is well established that diabetes impairs endothelium-dependent vasodilation, including those pathways involving vascular myocyte large-conductance Ca(2+)-activated K(+) channels (BK(Ca)), little is known about the effects of diabetes on BK(Ca) activation as an intrinsic response to contractile stimulation. We have investigated this mechanism in a model of Type 2 diabetes, the male Zucker diabetic fatty (ZDF) rat. BK(Ca) function in prediabetic (5-7 wk) and diabetic (17-20 wk) ZDF and lean control animals was assessed in whole arteries using myograph and electrophysiology techniques and in freshly dissociated myocytes by patch clamping. Log EC(25) values for phenylephrine concentration-tension curves were shifted significantly to the left by blockade of BK(Ca) with iberiotoxin (IBTX) in arteries from non- and prediabetic animals but not from diabetic animals. Smooth muscle hyperpolarizations of arteries evoked by the BK(Ca) opener NS-1619 were significantly reduced in the diabetic group. Voltage-clamp recordings indicated that IBTX-sensitive currents were not enhanced to the extent observed in nondiabetic controls by increasing the Ca(2+) concentration in the pipette solution or the application of NS-1619 in myocytes from diabetic animals. An alteration in the expression of BK(Ca) beta(1) subunits was not evident at either the mRNA or protein level in arteries from diabetic animals. Collectively, these results suggest that myocyte BK(Ca) of diabetic animals does not significantly oppose vasoconstriction, unlike that of prediabetic and control animals. This altered function was related to a reduced Ca(2+)-dependent activation of the channel not involving beta(1) subunits.  相似文献   

13.
The patch-clamp technique was used to investigate the effect of intracellular Mg2+ (Mgi2+) on the conductance of the large-conductance, Ca(2+)-activated K+ channel in cultured rat skeletal muscle. Measurements of single-channel current amplitudes indicated that Mgi2+ decreased the K+ currents in a concentration-dependent manner. Increasing Mgi2+ from 0 to 5, 10, 20, and 50 mM decreased channel currents by 34%, 44%, 56%, and 73%, respectively, at +50 mV. The magnitude of the Mgi2+ block increased with depolarization. For membrane potentials of -50, +50, and +90 mV, 20 mM Mgi2+ reduced the currents 22%, 56%, and 70%, respectively. Mgi2+ did not change the reversal potential, indicating that Mg2+ does not permeate the channel. The magnitude of the Mgi2+ block decreased as the concentration of K+ was increased. At a membrane potential of +50 mv, 20 mM Mgi2+ reduced the currents 71%, 56%, and 25% for Ki+ of 75, 150, and 500 mM. These effects of Mgi2+, voltage, and K+ were totally reversible. Although the Woodhull blocking model could approximate the voltage and concentration effects of the Mgi2+ block (Kd approximately 30 mM with 150 mM symmetrical K+; electrical distance approximately 0.22 from the inner surface), the Woodhull model could not account for the effects of K+. Double reciprocal plots of 1/single channel current vs. 1/[K+] in the presence and absence of Mgi2+, indicated that the Mgi2+ block is consistent with apparent competitive inhibition between Mgi2+ and Ki+. Cai2+, Nii2+, and Sri2+ were found to have concentration- and voltage-dependent blocking effects similar, but not identical, to those of Mgi2+. These observations suggest the blocking by Mgi2+ of the large-conductance, Ca(2+)-activated K+ channel is mainly nonspecific, competitive with K+, and at least partially electrostatic in nature.  相似文献   

14.
High conductance, calcium- and voltage-activated potassium (BK, MaxiK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. The most remarkable effects of beta1 and beta2 subunits are an increase of the calcium sensitivity and the slow down of channel kinetics. However, the detailed characteristics of channels formed by alpha and beta1 or beta2 are dissimilar, the most remarkable difference being a reduction of the voltage sensitivity in the presence of beta1 but not beta2. Here we reveal the molecular regions in these beta subunits that determine their differential functional coupling with the pore-forming alpha-subunit. We made chimeric constructs between beta1 and beta2 subunits, and BK channels formed by alpha and chimeric beta subunits were expressed in Xenopus laevis oocytes. The electrophysiological characteristics of the resulting channels were determined using the patch clamp technique. Chimeric exchange of the different regions of the beta1 and beta2 subunits demonstrates that the NH3 and COOH termini are the most relevant regions in defining the behavior of either subunit. This strongly suggests that the intracellular domains are crucial for the fine tuning of the effects of these beta subunits. Moreover, the intracellular domains of beta1 are responsible for the reduction of the BK channel voltage dependence. This agrees with previous studies that suggested the intracellular regions of the alpha-subunit to be the target of the modulation by the beta1-subunit.  相似文献   

15.
Charybdotoxin (CTX), a small, basic protein from scorpion venom, strongly inhibits the conduction of K ions through high-conductance, Ca2+-activated K+ channels. The interaction of CTX with Ca2+-activated K+ channels from rat skeletal muscle plasma membranes was studied by inserting single channels into uncharged planar phospholipid bilayers. CTX blocks K+ conduction by binding to the external side of the channel, with an apparent dissociation constant of approximately 10 nM at physiological ionic strength. The dwell-time distributions of both blocked and unblocked states are single-exponential. The toxin association rate varies linearly with the CTX concentration, and the dissociation rate is independent of it. CTX is competent to block both open and closed channels; the association rate is sevenfold faster for the open channel, while the dissociation rate is the same for both channel conformations. Membrane depolarization enhances the CTX dissociation rate e-fold/28 mV; if the channel's open probability is maintained constant as voltage varies, then the toxin association rate is voltage independent. Increasing the external solution ionic strength from 20 to 300 mM (with K+, Na+, or arginine+) reduces the association rate by two orders of magnitude, with little effect on the dissociation rate. We conclude that CTX binding to the Ca2+-activated K+ channel is a bimolecular process, and that the CTX interaction senses both voltage and the channel's conformational state. We further propose that a region of fixed negative charge exists near the channel's CTX-binding site.  相似文献   

16.
Gating of Slo1 calcium- and voltage-gated potassium (BK) channels involves allosteric interactions among the channel pore, voltage sensors, and Ca(2+)-binding domains. The allosteric activation of the Slo1 channel is in turn modulated by a variety of regulatory processes, including oxidation. Cysteine oxidation alters functional properties of Slo1 channels and has been suggested to contribute to the decrease in the channel activity following patch excision often referred to as rundown. This study examined the biophysical mechanism of rundown and whether oxidation of cysteine residues located in the C-terminus of the human Slo1 channel (C430 and C911) plays a role. Comparison of the changes in activation properties in different concentrations of Ca(2+) among the wild-type, C430A, and C911A channels during rundown and by treatment with the oxidant hydrogen peroxide showed that oxidation of C430 and C911 markedly contributes to the rundown process.  相似文献   

17.
In this study, single-channel recordings of high-conductance Ca(2+)-activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)-blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed-blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening.  相似文献   

18.
Large-conductance Ca2+-activated K+ (BKCa) channels play a critical role in regulating the cellular excitability in response to change in blood flow. It has been demonstrated that vascular BKCa channel currents in both humans and rats are increased after exercise training. This up-regulation of the BKCa channel activity in arterial myocytes may represent a cellular compensatory mechanism of limiting vascular reactivity to exercise training. However, the underlying mechanisms are not fully understood. In the present study, we examined the single channel activities and kinetics of the BKCa channels in rat thoracic aorta smooth muscle cells. We showed that exercise training significantly increased the open probability (Po), decreased the mean closed time and increased the mean open time, and the sensitivity to Ca2+ and voltage without altering the unitary conductance and the K+ selectivity. Our results suggest a novel mechanism by which exercise training increases the K+ currents by changing the BKCa channel activities and kinetics.  相似文献   

19.
Norepinephrine (NE) is one of the major neurotransmitters that determine melatonin production in the pineal gland. Although a substantial amount of Ca2+ influx is triggered by NE, the Ca2+ entry pathway and its physiological relevance have not been elucidated adequately. Herein we report that the Ca2+ influx triggered by NE significantly regulates the protein level of serotonin N-acetyltransferase, or arylalkylamine N-acetyltransferase (AANAT), a critical enzyme in melatonin production, and is responsible for maintaining the Ca2+ response after repetitive stimulation. Ca2+ entry evoked by NE was dependent on PLC activation. NE evoked a substantial amount of Ca2+ entry even after cells were treated with 1-oleoyl-2-acetyl-sn-glycerol (OAG), an analog of diacylglycerol. To the contrary, further OAG treatment after cells had been exposed to OAG did not evoke additional Ca2+ entry. Moreover, NE failed to induce further Ca2+ entry after the development of Ca2+ entry induced by thapsigargin (Tg), suggesting that the pathway of Ca2+ entry induced by NE might be identical to that of Tg. Interestingly, Ca2+ entry evoked by NE or Tg induced membrane hyperpolarization that was reversed by iberiotoxin (IBTX), a specific inhibitor of large-conductance Ca2+-activated K+ (BK) channels. Moreover, IBTX-sensitive BK current was observed during application of NE, suggesting that activation of the BK channels was responsible for the hyperpolarization. Furthermore, the activation of BK channels triggered by NE contributed to regulation of the protein level of AANAT. Collectively, these results suggest that NE triggers Ca2+ entry coupled to BK channels and that NE-induced Ca2+ entry is important in the regulation of AANAT. serotonin N-acetyltransferase; pineal gland  相似文献   

20.
Lu T  Ye D  He T  Wang XL  Wang HL  Lee HC 《Biophysical journal》2008,95(11):5165-5177
The large-conductance Ca2+-activated K+ (BK) channels play an important role in the regulation of cellular excitability in response to changes in intracellular metabolic state and Ca2+ homeostasis. In vascular smooth muscle, BK channels are key determinants of vasoreactivity and vital-organ perfusion. Vascular BK channel functions are impaired in diabetes mellitus, but the mechanisms underlying such changes have not been examined in detail. We examined and compared the activities and kinetics of BK channels in coronary arterial smooth muscle cells from Lean control and Zucker Diabetic Fatty (ZDF) rats, using single-channel recording techniques. We found that BK channels in ZDF rats have impaired Ca2+ sensitivity, including an increased free Ca2+ concentration at half-maximal effect on channel activation, a reduced steepness of Ca2+ dose-dependent curve, altered Ca2+-dependent gating properties with decreased maximal open probability, and a shortened mean open-time and prolonged mean closed-time durations. In addition, the BK channel β-subunit-mediated activation by dehydrosoyasaponin-1 (DHS-1) was lost in cells from ZDF rats. Immunoblotting analysis confirmed a 2.1-fold decrease in BK channel β1-subunit expression in ZDF rats, compared with that of Lean rats. These abnormalities in BK channel gating lead to an increase in the energy barrier for channel activation, and may contribute to the development of vascular dysfunction and complications in type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号