首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new thiazolyl peptide antibiotic GE2270 A, isolated from Planobispora rosea strain ATCC 53773, is shown to inhibit bacterial protein biosynthesis in vitro by affecting specifically the GTP-bound form of elongation factor Tu (EF-Tu). The 'off' rate of EF-Tu.GTP is slowed down 400-fold, locking GTP on EF-Tu, whereas EF-Tu.GDP is unaffected. Therefore, on the EF-Tu.guanine nucleotide interaction, GE2270 A mimicks the effect of aa-tRNA. In line with this, the binding of aa-tRNA to EF-Tu.GTP is hindered by the antibiotic, as shown by the absence of a stable ternary complex and the inhibition of the enzymatic binding of aa-tRNA to the ribosome. This blocks the elongation cycle. GE2270 A does not essentially modify the intrinsic GTPase activity of EF-Tu, but impairs the stimulation by ribosomes of this reaction. The negative effect of GE2270 A on the EF-Tu.GTP interaction with aa-tRNA bears similarities with that of the structurally unrelated pulvomycin, whereas marked differences were found by comparing the effects of these two antibiotics on EF-Tu.GDP. This work emphasizes the varieties of the transitional conformations which tune the EF-Tu interaction with GTP and GDP.  相似文献   

2.
Pulvomycin inhibits protein synthesis by preventing the formation of the ternary complex between elongation factor Tu (EF-Tu) x GTP and aa-tRNA. In this work, the crystal structure of Thermus thermophilus EF-Tu x pulvomycin in complex with the GTP analogue guanylyl imino diphosphate (GDPNP) at 1.4 A resolution reveals an antibiotic binding site extending from the domain 1-3 interface to domain 2, overlapping the domain 1-2-3 junction. Pulvomycin binding interferes with the binding of the 3'-aminoacyl group, the acceptor stem, and 5' end of tRNA. Only part of pulvomycin overlaps the binding site of GE2270 A, a domain 2-bound antibiotic of a structure unrelated to pulvomycin, which also hinders aa-tRNA binding. The structure of the T. thermophilus EF-Tu x GDPNP x GE2270 A complex at 1.6 A resolution shows that GE2270 A interferes with the binding of the 3'-aminoacyl group and part of the acceptor stem of aa-tRNA but not with the 5' end. Both compounds, pulvomycin more markedly, hinder the correct positioning of domain 1 over domains 2 and 3 that characterizes the active form of EF-Tu, while they affect the domain 1 switch regions that control the EF-Tu x GDP/GTP transitions in different ways. This work reveals how two antibiotics with different structures and binding modes can employ a similar mechanism of action.  相似文献   

3.
Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction’s transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins.  相似文献   

4.
Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential for accurate and rapid aa-tRNA selection. Here we use single-molecule methods to investigate the mechanism of action of the antibiotic thiostrepton and show that the GTPase center of the ribosome has at least two discrete functions during aa-tRNA selection: binding of EF-Tu(GTP) and stimulation of GTP hydrolysis by the factor. We separate these two functions of the GTPase center and assign each to distinct, conserved structural regions of the ribosome. The data provide a specific model for the coupling between the decoding site and the GTPase center during aa-tRNA selection as well as a general mechanistic model for ribosome-stimulated GTP hydrolysis by GTPase translation factors.  相似文献   

5.
Experiments dedicated to gaining an understanding of the mechanism underlying the orderly, sequential association of elongation factor Tu (EF-Tu) and elongation factor G (EF-G) with the ribosome during protein synthesis were undertaken. The binding of one EF is always followed by the binding of the other, despite the two sharing the same—or a largely overlapping—site and despite the two having isosteric structures. Aminoacyl-tRNA, peptidyl-tRNA, and deacylated-tRNA were bound in various combinations to the A-site, P-site, or E-site of ribosomes, and their effect on conformation in the peptidyl transferase center, the GTPase-associated center, and the sarcin/ricin domain (SRD) was determined. In addition, the effect of the ribosome complexes on sensitivity to the ribotoxins sarcin and pokeweed antiviral protein and on the binding of EF-G•GTP were assessed. The results support the following conclusions: the EF-Tu ternary complex binds to the A-site whenever it is vacant and the P-site has peptidyl-tRNA; and association of the EF-Tu ternary complex is prevented, simply by steric hindrance, when the A-site is occupied by peptidyl-tRNA. On the other hand, the affinity of the ribosome for EF-G•GTP is increased when peptidyl-tRNA is in the A-site, and the increase is the result of a conformational change in the SRD. We propose that peptidyl-tRNA in the A-site is an effector that initiates a series of changes in tertiary interactions between nucleotides in the peptidyl transferase center, the SRD, and the GTPase-associated center of 23S rRNA; and that the signal, transmitted through a transduction pathway, informs the ribosome of the position of peptidyl-tRNA and leads to a conformational change in the SRD that favors binding of EF-G.  相似文献   

6.
The interaction of the Escherichia coli elongation factor Tu guanosine tetraphosphate complex (EF-Tu ppGpp) with aminoacyl-tRNAs(aa-tRNA) was reinvestigated by gel filtration and hydrolysis protection experiments. These experiments show that EF-Tu X ppGpp like EF-Tu X GDP (Pingoud, A., Block, W., Wittinghofer, A., Wolf, H. & Fischer, E. (1982) J. Biol. Chem. 257, 11261-11267) forms a fairly stable complex with Phe-tRNAPhe, KAss being 0.6 X 10(5) M-1 at 25 degrees C. The binding of the EF-Tu X ppGpp X aa-tRNA complex to programmed ribosomes was investigated by a centrifugation technique. It is shown that this complex is bound codon-specific with KAss = 3 X 10(7) M-1 at 0 degrees C and that it stimulates peptidyl transfer. A numerical estimation of the intracellular concentration of EF-Tu X GTP X aa-tRNA and EF-Tu X ppGpp X aa-tRNA during normal growth and under the stringent response indicates that ppGpp accumulation does affect the EF-Tu X GTP X aa-tRNA concentration but does not lead to major depletion of this pool. Furthermore, due to the higher affinity of EF-Tu X GTP to aa-tRNA and of the ternary complex EF-Tu X GTP X aa-tRNA to the ribosome, EF-Tu X ppGpp X aa-tRNA binding to the ribosome is not significant. According to our measurements and calculations, therefore, a direct participation of EF-Tu in slowing down the rate of protein biosynthesis and improving its accuracy during amino acid starvation is not obvious.  相似文献   

7.
Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu·guanosine 5′-triphosphate·aa-tRNACys complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein·RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu·Cys-tRNACys interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3′ CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu·Cys-tRNACys binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNACys with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein·tRNA interface and is the basis for the entropy calculations.  相似文献   

8.
Aminoacyl-tRNA (aa-tRNA) is delivered to the ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. The stepwise movement of aa-tRNA from EF-Tu into the ribosomal A site entails a number of intermediates. The ribosome recognizes aa-tRNA through shape discrimination of the codon-anticodon duplex and regulates the rates of GTP hydrolysis by EF-Tu and aa-tRNA accommodation in the A site by an induced fit mechanism. Recent results of kinetic measurements, ribosome crystallography, single molecule FRET measurements, and cryo-electron microscopy suggest the mechanism of tRNA recognition and selection.  相似文献   

9.
The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.  相似文献   

10.
We have studied the properties of a mutant elongation factor Tu, encoded by tufB (EF-TuBo), in which Gly-222 is replaced by Asp. For its purification from the kirromycin-resistant EF-Tu encoded by tufA (EF-TuAr), a method was developed by exploiting the different affinities to kirromycin of the two factors and the competition between kirromycin and elongation factor Ts (EF-Ts) for binding to EF-Tu. The resulting EF-TuBo kirromycin and EF-TuAr EF-Ts complexes are separated by chromatography on diethylaminoethyl-Sephadex A-50. For the first time we have succeeded in obtaining a tufB product in homogeneous form. Compared with wild-type EF-Tu, EF-TuBo displays essentially the same affinity for GDP and GTP, with only the dissociation rate of EF-Tu GTP being slightly faster. Protection of amino-acyl-tRNA (aa-tRNA) against nonenzymatic deacylation by different EF-Tu species indicates that conformational alterations occur in the ternary complex EF-TuBo GTP aa-tRNA. However, the most dramatic modification is found in the EF-TuBo interaction with the ribosome. Its activity in poly(Phe) synthesis as well as in the GTPase activity associated with the interaction of its ternary complex with the ribosome mRNA complex requires higher Mg2+ concentrations than wild-type EF-Tu (Mg2+ optimum at 10-14 vs. 6 mM), even if EF-TuBo can sustain enzymatic binding of aa-tRNA to ribosomes at low Mg2+. The anomalous behavior of EF-TuBo is reflected in a remarkable increase of the fidelity in poly(Phe) synthesis, especially at high Mg2+ concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of approximately 9 A, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli, the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.  相似文献   

12.
The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNAPhe, Trp-tRNATrp, or Leu-tRNALeuI. The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same ‘loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon–anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection.  相似文献   

13.
The Escherichia coli protein synthesis initiation factor IF2 is a member of the large family of G-proteins. Along with translational elongation factors EF-Tu and EF-G and translational release factor RF-3, IF2 belongs to the subgroup of G-proteins that are part of the prokaryotic translational apparatus. The roles of IF2 and EF-Tu are similar: both promote binding of an aminoacyl-tRNA to the ribosome and hydrolyze GTP. In order to investigate the differences and similarities between EF-Tu and IF2 we have created point mutations in the G-domain of IF2, Thr445 to Cys, Ile500 to Cys, and the double mutation. Threonine 445 (X1), which corresponds to cysteine 81 in EF-Tu, is well conserved in the DX1X2GH consensus sequence that has been proposed to interact with GTP. The NKXD motif, in which X is isoleucine 500 in IF2, corresponds to cysteine 137 in EF-Tu, and is responsible for the binding of the guanine ring. The recombinant mutant proteins were expressed and tested in vivo for their ability to sustain growth of an Escherichia coli strain lacking the chromosomal copy of the infB gene coding for IF2. All mutated proteins resulted in cell viability when grown at 42 degrees C or 37 degrees C. However, Thr445 to Cys mutant showed a significant decrease in the growth rate at 25 degrees C. The mutant proteins were overexpressed and purified. As observed in vivo, a reduced activity at low temperature was measured when carrying out in vitro ribosome dependent GTPase and stimulation of ribosomal fMet-tRNAfMet binding.  相似文献   

14.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

15.
This work analyzes the action of enacyloxin Ila, an inhibitor of bacterial protein biosynthesis. Enacyloxin IIa [IC50 on poly(Phe) synthesis approximately 70 nM] is shown to affect the interaction between elongation factor (EF) Tu and GTP or GDP; in particular, the dissociation of EF-Tu-GTP is strongly retarded, causing the Kd of EF- Tu-GTP to decrease from 500 to 0.7 nM. In its presence, the migration velocity of both GTP- and GDP-bound EF-Tu on native PAGE is increased. The stimulation of EF-Tu-GDP dissociation by EF-Ts is inhibited. EF- Tu-GTP can still form a stable complex with aminoacyl-tRNA (aa-tRNA), but it no longer protects aa-tRNA against spontaneous deacylation, showing that the EF-Tu-GTP orientation with respect to the 3' end of aa-tRNA is modified. However, the EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site is impaired only slightly by the antibiotic and the activity of the peptidyl-transferase center, as determined by puromycin reactivity, is not affected. In contrast, the C-terminal incorporation of Phe into poly(Phe)-tRNA bound to the P-site is inhibited, an effect that is observed if Phe-tRNA is bound to the A-site nonenzymatically as well. Thus, enacyloxin IIa can affect both EF-Tu and the ribosomal A-site directly, inducing an anomalous positioning of aa-tRNA, that inhibits the incorporation of the amino acid into the polypeptide chain. Therefore, it is the first antibiotic found to have a dual specificity targeted to EF-Tu and the ribosome.  相似文献   

16.
The ubiquity of elongation factor Tu (EF-Tu)-dependent conformational changes in amino-acyl-tRNA (aa-tRNA) and the origin of the binding energy associated with aa-tRNA.EF-Tu.GTP ternary complex formation have been examined spectroscopically. Fluorescein was attached covalently to the 4-thiouridine base at position 8 (s4U-8) in each of four elongator tRNAs (Ala, Met-m, Phe, and Val). Although the probes were chemically identical, their emission intensities in the free aa-tRNAs differed by nearly 3-fold, indicating that the dyes were in different environments and hence that the aa-tRNAs had different tertiary structures near s4U-8. Upon association with EF-Tu.GTP, the emission intensities increased by 244%, 57%, or 15% for three aa-tRNAs due to a change in tRNA conformation; the fourth aa-tRNA exhibited no fluorescence change upon binding to EF-Tu.GTP. Despite the great differences in the emission intensities of the free aa-tRNAs and in the magnitudes of their EF-Tu-dependent intensity increases, the emission intensity per aa-tRNA molecule was nearly the same (within 9% of the average) for the four aa-tRNAs when bound to EF-Tu-GTP. Thus, the binding of EF-Tu.GTP induced or selected a tRNA conformation near s4U-8 that was very similar, and possibly the same, for each aa-tRNA species. It therefore appears that EF-Tu functions, at least in part, by minimizing the conformational diversity in aa-tRNAs prior to their beginning the recognition and binding process at the single decoding site on the ribosome. Since an EF-Tu-dependent fluorescence change was also observed with fluorescein-labeled tRNA(Phe), the protein-dependent structural change is effected by direct interactions between EF-Tu and the tRNA and does not require the aminoacyl group. The Kd of the tRNA(Phe).EF-Tu.GTP ternary complex was determined, at equilibrium, to be 2.6 microM by the ability of the unacylated tRNA to compete with fluorescent Phe-tRNA for binding to the protein. Comparison of this Kd with that of the Phe-tRNA ternary complex showed that in this case the aminoacyl moiety contributed 4.3 kcal/mol toward ternary complex formation at 6 degrees C but that the bulk of the binding energy in the ternary complex was derived from direct protein-tRNA interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

18.
The refined crystal structure of the ternary complex of yeast Phe-tRNAPhe, Thermus aquaticus elongation factor EF-Tu and the non-hydrolyzable GTP analog, GDPNP, revelas many details of the EF-Tu recognition of aminoacylated tRNA (aa-tRNA). EF-Tu-GTP recognizes the aminoacyl bond and one side of the backbone fold of the acceptor helix and has a high affinity for all ordinary elongator aa-tRNAs by binding to this aa-tRNA motif. Yet, the binding of deacylated tRNA, initiator tRNA, and selenocysteine-specific tRNA (tRNASec) is effectively discriminated against. Subtle rearrangements of the binding pocket may occur to optimize the fit to any side chain of the aminoacyl group and interactions with EF-Tu stabilize the 3′-aminoacyl isomer of aa-tRNA. A general complementarity is observed in the location of the binding sites in tRNA for synthetases and for EF-Tu. The complex formation is highly specific for the GTP-bound conformation of EF-Tu, which can explain the effects of various mutants.  相似文献   

19.
In eubacteria, ribosome recycling factor (RRF) and elongation factor G (EFG) function together to dissociate posttermination ribosomal complexes. Earlier studies, using heterologous factors from Mycobacterium tuberculosis in Escherichia coli revealed that specific interactions between RRF and EFG are crucial for their function in ribosome recycling. Here, we used translation factors from E. coli, Mycobacterium smegmatis and M. tuberculosis, and polysomes from E. coli and M. smegmatis, and employed in vivo and in vitro experiments to further understand the role of EFG in ribosome recycling. We show that E. coli EFG (EcoEFG) recycles E. coli ribosomes with E. coli RRF (EcoRRF), but not with mycobacterial RRFs. Also, EcoEFG fails to recycle M. smegmatis ribosomes with either EcoRRF or mycobacterial RRFs. On the other hand, mycobacterial EFGs recycle both E. coli and M. smegmatis ribosomes with either of the RRFs. These observations suggest that EFG establishes distinct interactions with RRF and the ribosome to carry out ribosome recycling. Furthermore, the EFG chimeras generated by swapping domains between mycobacterial EFGs and EcoEFG suggest that while the residues needed to specify the EFG interaction with RRF are located in domains IV and V, those required to specify its interaction with the ribosome are located throughout the molecule.  相似文献   

20.
The bacterial translational GTPases (initiation factor IF2, elongation factors EF-G and EF-Tu and release factor RF3) are involved in all stages of translation, and evidence indicates that they bind to overlapping sites on the ribosome, whereupon GTP hydrolysis is triggered. We provide evidence for a common ribosomal binding site for EF-G and IF2. IF2 prevents the binding of EF-G to the ribosome, as shown by Western blot analysis and fusidic acid-stabilized EF-G.GDP.ribosome complex formation. Additionally, IF2 inhibits EF-G-dependent GTP hydrolysis on 70 S ribosomes. The antibiotics thiostrepton and micrococcin, which bind to part of the EF-G binding site and interfere with the function of the factor, also affect the function of IF2. While thiostrepton is a strong inhibitor of EF-G-dependent GTP hydrolysis, GTP hydrolysis by IF2 is stimulated by the drug. Micrococcin stimulates GTP hydrolysis by both factors. We show directly that these drugs act by destabilizing the interaction of EF-G with the ribosome, and provide evidence that they have similar effects on IF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号