首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity.  相似文献   

2.
Slit scanning flow cytometry has been applied to the analysis of the cell cycle and cell-cycle-dependent events in Saccharomyces cerevisiae, yielding information on the low-resolution spatial distribution of cellular components in single cells of unperturbed cell populations. Because this process is rapid, large numbers of cells can be analyzed to give distributions of parameters in a given population. To study asymmetric cell division and cell cycle progression, forward-angle light scattering (FALS) signals together with fluorescence signals from acriflavine-stained nuclei have been measured in cells from exponentially growing yeast populations. An algorithm has been developed that assigns the position of the bud neck in the FALS signals so that both FALS and DNA signals can be analyzed in terms of the contributions from the mother cell and the cell bud. The data indicate that mother cell FALS, on average, remains constant while FALS due to the cell bud increases as a cell progresses through the cell cycle. By identifying mitotic cells and measuring their properties, we have found that the coefficient of variation for the distribution of FALS is smallest within the dividing cell population and largest within the newborn cell population, in accordance with the critical size control mechanism of yeast cell growth. The use of this experimental approach to provide data for statistical population models is discussed.  相似文献   

3.
With the aid of a voltage-sensitive oxonol dye, flow cytometry was used to measure relative changes in resting membrane potential (Vm) and forward angle light scatter (FALS) profiles of a differentiating/differentiated murine neuroblastoma cell line (N1E-115). Electrophysiological differentiation was characterized by Vm establishment. The (Vm)-time profile was found to be seed cell concentration-dependent for cell densities of less than 2 × 104 cells/cm2. At higher initial cell densities, under differentiating culture conditions, Vm development commenced on day 2 and reached a steady-state on day 12. The relative distribution of differentiated cells between low and high FALS has been proposed as a potential culture electrophysiological differentiation state index. These experiments offer a general methodology to characterize cultured excitable cells of nervous system origin, with respect to electrophysiological differentiation. This information is valuable in studies employing neuroblastoma cells as in vitro screening models for safety/hazard evaluation and/or risk assessment of therapeutical and industrial chemicals under development. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Flow cytometry was used to study starvation of Escherichia coli in artificial sea water. Flow cytometric narrow-angle light scatter was compared and assessed in relation to the cell sizes obtained by scanning electron microscopy at low temperature, and by image analysis. A correlation between narrow-angle light scatter and cell size was not observed, although an acceptable correlation (γ= -0.845) between narrow-angle light scatter and the starvation period was observed. On the other hand, the distribution of narrow-angle light scatter at any given moment of culture is asymmetric and may be associated with the cell size distribution at the specific moment of starvation.  相似文献   

5.
Cell cycle, cell size and rhodamine 123 fluorescence in cell populations of two batch cultures were analysed and quantified with a fluorescence-activated cell sorter (FACS). Two cultures derived from either exponential or stationary phase innocula were investigated in order to demonstrate the dependency of the subsequent cell growth on innoculum condition. The results demonstrated that the level of activity of cells in the innoculum culture could have a significant effect on cellular activity during the initial phase of the inoculated culture, as it advances through its growth cycle. Positive correlation was found between the cell size and mitochondrial activity (as measured by rhodamine 123 uptake) with S and G2 fractions as the cell progressed through the cell cycle. The enumeration of the fractions of cell cycle phases has helped in prediction of the changes in cell numbers following perturbation of the culture condition.  相似文献   

6.
7.
BACKGROUND: In the past decade, flow cytometry has become a useful and precise alternative to microscopic bacterial cell counts in aquatic samples. However, little evidence of its usefulness for the evaluation of bacterial biovolumes has emerged in from the literature. METHODS: The light scattering and cell volume of starved bacterial strains and natural bacterial communities from the Black Sea were measured by flow cytometry and epifluorescence microscopy, respectively, in order to establish a relationship between light scattering and cell volume. RESULTS: With the arc-lamp flow cytometer, forward angle light scatter (FALS) was related to cell size in both the starved strains and natural communities, although regression parameters differed. We tested the predictive capacity of the FALS verous cell size relationship in a bacterial community from the North Sea. That analysis showed that a reliable bacterial biovolume prediction of a natural bacterial community can be obtained from FALS using a model generated from natural bacterial community data. CONCLUSIONS: Bacterial biovolume is likely to be related to FALS measurements. It is possible to establish a generally applicable model derived from natural bacterial assemblages for flow cytometric estimation of bacterial biovolumes by light scatter.  相似文献   

8.
Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of thermal adaptation will help clarify the mechanisms driving these phenotypic responses.  相似文献   

9.
Summary Growth hormone production by a rat pituitary tumor cell line (GH1) was measured during lag, exponential, and plateau phases of growth in different culture media. Growth hormone secretion was low during lag and early exponential phase; it increased late in the exponential phase and continued to increase during the plateau phase. This biphasic pattern of growth hormone production was observed in all media and sera utilized. Both the doubling time and growth hormone production were influenced by the choice of media and sera. In addition, the length of time in culture affected the growth fraction with passage level 40 GH1 cells having a 79% growth fraction, whereas the growth fraction of passage level 100 cells was 95%. Using the population doubling time as a criterion for a choice of medium, F-10 medium supplemented with 20% fetal bovine serum consistently yielded the most rapid doubling time (32 hr), whereas Dulbecco's MEM supplemented with 15% horse serum and 2.5% fetal bovine serum yielded the greatest plateau cell density. Growth hormone secretion and the population doubling times were directly related to culture conditions including length of time in culture, choice of tissue culture media, choice of sera, and the phase of cell growth (lag, exponential or plateau).  相似文献   

10.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

11.
NAD is converted into a chromatin-bound polymer, poly(ADPribose), with the excision of nicotinamide. In intact cells, the incorporation of labeled adenine, through NAD, into poly(ADPribose) has been correlated with the commitment and/or initial phenotypic expression of chick limb mesenchymal cells. Using an assay for chemical quantities of poly(ADPribose), we report here measurements of poly(ADPribose) during limb development in situ and during limb mesenchymal cell commitment and expressional events in cell culture. Substantial changes in the levels of poly(ADPribose) are observed during early phases of limb cell development either in situ (embryonic stages 22 to 26) or in culture (Days 1 to 4); during this time, we observed a threefold decrease in poly(ADPribose) per unit DNA (21 to 7 nmoles/mg DNA), as compared to relatively minor changes of 10 to 20% during later expressional events especially related to muscle development. These observations establish a correlation between cellular poly(ADPribose) levels and the early phases of chick limb mesenchymal cell differentiation and development.  相似文献   

12.
This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.  相似文献   

13.
Temporal trends in biological invasions are often described by a lag‐phase of little or no increase in species occurrence followed by an increase‐phase in which species occurrence rises rapidly. While several biological and environmental mechanisms may underlie lag‐phases, they may also represent statistical artefacts or temporal changes in sampling effort. To date, distinguishing the facts from these artefacts has not been possible. Here we describe a method for estimating the lag‐phase in cumulative records of species occurrence, using a piecewise regression model that explicitly differentiates the lag and increase phases. We used the von Bertalanffy, logistic, linear and exponential functions to model the increase phase, and identified the best‐fitting function using model selection techniques. We confirmed the accuracy of our method using simulated data and then estimated the length of the lag‐phase (tlag), the maximum collection rate (r) and the projected asymptotic number of records (K) using herbarium records for 105 weed species in New Zealand, while accounting for changes in sampling effort. Nearly all the New Zealand weed species had a lag‐phase, which averaged around 20–30 years, with 4% of species having a lag‐phase greater than 40 years. In more than two thirds of the cases, the accumulation of records was best modelled with the decelerating von Bertalanffy function, despite the tendency for temporal variation in sampling effort to force cumulative herbarium records to follow the sigmoidal shape of a logistic curve. A positive correlation between r and K is consistent with the assumption that the final distribution of an alien plant species reflects its rate of spread. Seemingly rare but fast‐spreading aliens may thus become tomorrow's noxious weeds. A positive correlation between inflection year and r warns that the weeds that have only begun to spread relatively recently may spread faster than previously known invaders.  相似文献   

14.
The influence of conditioned medium (CM) on cell physiology and recombinant protein production in Trichoplusia ni insect cells (T. ni, BTI-Tn-5B1-4) has been investigated. Cell cycle analysis showed that a high proportion of the cell population (80-90%) was in G1 during the whole culture, indicating that the S and G2/M phases are short relative to the G1 phase. Directly after inoculation, a rapid decrease of the S-phase population occurred, which could be observed as a lag-phase. The following increase in the number of cells in S occurred after 7 h of culture for cells in fresh medium, whereas for cells with the addition of CM it occurred at an earlier time point (5 h) and these cells had therefore a shorter lag-phase. The initial changes in the S-phase population were also affected by the inoculum cell density, as higher seeding cell densities resulted in a more rapid increase in the S-phase population after inoculation. These changes in cell cycle distribution were reflected in the cell size, and the CM-cells were smaller than the cells in fresh medium. Recombinant protein production in T. ni cells was improved by the addition of CM. The specific productivity was increased by 30% compared to cells in fresh medium. This beneficial effect was seen between 20 and 72 h of culture. In contrast, the highest specific productivity was obtained already at 7 h for the cells in fresh medium and then decreased rapidly. The total product concentration was around 30% higher in the culture with CM compared to the culture in fresh medium, and the maximum product concentration was obtained on day 2 compared to day 3 for the cells in fresh medium. Our results indicate that the positive effect on productivity by CM is related to its growth-promoting effect, suggesting that the proliferation potential of the culture determines the productivity.  相似文献   

15.
Flow cytometry was used to evaluate the effects of hyperosmotic stress on cell-cycle distribution and cell-associated immunoglobulins for murine hybridoma cells grown in batch culture. Paraformaldehyde/methanol fixation substantially increased the fluorescence signal for intracellular immunoglobulins compared to ethanol fixation. For surface immunoglobulins, similar fluorescence signals were observed regardless of fixation method. Dual staining of immunoglobulins and cellular DNA was employed to determine immunoglobulin pool size as a function of cell-cycle phase. The intracellular immunoglobulin pool sizes increased as the cells progressed through the cell cycle for both control and hyperosmotic cultures. For control cultures, the immunoglobulin pool size increased during the exponential phase of culture, followed by a decrease as the cultures entered stationary phase. In contrast, hyperosmotic cultures showed an initial decrease in immunoglobulin pool size upon the application of osmotic shock, followed by an increase to a level above that of control cultures. This behavior was observed in all phases of the cell cycle. In addition, hyperosmotic cultures exhibited an increase in cell size when compared to control cultures. When normalized for cell size, the intracellular immunoglobulin concentration in hyperosmotic cultures was initially lower than in control cultures and subsequently increased to slightly above the level of control cells. Cells in all phases of the cell cycle behaved in a similar manner. There was no apparent relationship between the intracellular antibody concentration and the rate of antibody secretion.  相似文献   

16.
The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower growing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, tau(B), is fixed. The two parameters in the model, the critical size and tau(B), were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 372-379, 1997.  相似文献   

17.
An immunofluorescent staining procedure has been developed to identify, with flow cytometry, replicating cells of Saccharomyces cerevisiae after incorporation of bromodeoxyuridine (BrdUrd) into the DNA. Incorporation of BrdUrd is made possible by using yeast strains with a cloned thymidine kinase gene from the herpes simplex virus. An exposure time of 4 min to BrdUrd results in detectable labeling of the DNA. The BrdUrd/DNA double staining procedure has been optimized and the flow cytometry measurements yield histograms comparable to data typically obtained for mammalian cells. On the basis of the accurate assessment of cell fractions in individual cell cycle phases of the asynchronously growing cell population, the average duration of the cell cycle phases has been evaluated. For a population doubling time of 100 min it was found that cells spend in average 41 min in the replicating phase and 24 min in the G2+M cell cycle period. Assuming that mother cells immediately reenter the S phase after cell division, daughter cells spend 65 min in the G1 cell cycle phase. Together with the single cell fluorescence parameters, the forward-angle light scattering intensity (FALS) has been determined as an indicator of cell size. Comparing different temporal positions within the cell cycle, the determined FALS distributions show the lowest variability at the beginning of the S phase. The developed procedure in combination with multiparameter flow cytometry should be useful for studying the kinetics and regulation of the budding yeast cell cycle.  相似文献   

18.
Delayed luminescence (DL), also termed delayed fluorescence or delayed light emission, is the phenomenon of long-lived light emission by plants and cyanobacteria after being illuminated with light and put into darkness. Culture growth of three Prorocentrum minimum strains was studied with DL measurements. DL decay kinetics was measured from 1–60 s after a pulse of white light. The strains used were from the Adriatic Sea (PmK), from Chesapeake Bay, USA (D5), and from the Baltic Sea (BAL), cultured at salinity of 32, 16, and 8 (practical salinity scale), respectively. The strains differed in cell size and chlorophyll a content (PmK > D5 > BAL), as well as in DL parameters. The DL results were compared to standard measurements of culture density and carbon content (calculated from biovolumes). DL decay curves had a specific peak, which changed with culture growth and showed more similarities between the strains PmK and D5. The DL intensity increased with cell density and carbon content in a two-stage process, corresponding to the lag and exponential phases of growth. DL intensity was best correlated with carbon content irrespective of strain and is proposed as an estimate of biomass and for differentiating between lag and exponential phases of growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号