首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium represents a major environmental pollutant that may induce severe damage, especially in the kidney where cadmium accumulates. While cadmium is known to severely impair renal tubular functions, glomerular structures are also potential targets. Owing to their contractile properties, glomerular mesangial cells play a major role in the control of glomerular hemodynamics and influence the ultrafiltration coefficient. Cell cultures provide alternative and fruitful models for study of in vitro toxicology. However, the use of primary human mesangial cell cultures is hampered by their limited survival span and their rapid dedifferentiation during passages. This study presents a human stable immortalized mesangial cell line, designated IP15. Cell characteristics were investigated by the detection of known mesangial markers, as well as their ability to contract in response to angiotensin II. IP15 cells were used to investigate cadmium uptake and morphological changes such as cell contraction and cytoskeleton protein expression. The IC50 cytotoxicity index was obtained with 3.55 μmol/L using neutral red assay for 24 h. After cadmium exposure (1 μmol/L, determined as nonlethal concentration), 0.38 μg Cd/mg protein was internalized by the cells as evaluated by inductively coupled plasma optical emission spectrometry (ICP/OES). Cadmium induced a significant cell surface reduction that correlated with smooth-muscle α-actin disorganization. Thus, the IP15 cell line is a suitable model for study of in vitro cadmium cytotoxicity in mesangial cells and allows sufficient material to be obtained for future studies of the intracellular effects of cadmium exposure.  相似文献   

2.
The purpose of this short review is to present the potential of using isolated glomeruli and cultured mesangial cells as two differentin vitro models to assess the glomerular effect of molecules with nephrotoxic properties. The advantage of using isolated renal glomeruli is that they conserve the architecture of this anatomical region of the kidney; moreover, they are free of any vascular, nervous or humoral influences derived from other regions of the kidney. Mesangial cells are perivascular pericytes located within the central portion of the glomerular tuft between capillary loops. Mesangial cells have a variety of functions including synthesis and assembly of the mesangial matrix, endocytosis and processing of plasma macromolecules, and control of glomerular hemodynamics, mainly the ultrafiltration coefficient K f, via mesangial cell contraction or release of vasoactive hormones. Most authors agree that mesangial cells play a major role in glomerular contraction, filtration surface area, and K f regulation. One of the major effects of toxicants on glomerular structures is contraction. We can assess quantitatively the degree of toxicant-induced mesangial cell contraction or glomerular contraction by measuring the changes in planar cell surface area or apparent glomerular cross-sectional area after exposition to the toxicant. Thesein vitro models can also reveal glomerular effects of xenobiotics that are difficult or impossible to observe in vivo. In addition, these studies permit a fundamental examination of the mechanism of action of xenobiotics on glomerular cells, including the possibility that at least a part of their effects are mediated by local mediators released by glomerular cells. We review the effects and the mechanisms of action of several toxicants such as gentamicin, cyclosporin, cisplatin, and cadmium on isolated glomeruli or cultured mesangial cells. As suchin vitro results confirmin vivo renal hemodynamic changes caused by toxicants, we conclude that these models are fruitful tools for the study of renal toxicity. Thesein vitro systems might also serve as a predictive tool in the evaluation of drugs inducing changes in glomerular filtration rate and as a way to propose protective agents against these dramatic hemodynamic effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Many drugs used in clinics can dramatically reduce renal hemodynamics. For some years there have been developed in our laboratory twoin vitro glomerular models, isolated glomeruli and mesangial cell cultures, to quantitate, by video image analyzer, the direct glomerular effect of vasoreactive agents. The present study shows the vasoconstrictive effects of angiotensin II and cyclosporin in both models and compares their glomerular vasoconstriction with or without vasodilating agents such as verapamil. This drug-induced glomerular vasoreactivity is time- and dose-dependent; moreover, it can be reversible after perfusion in control conditions. The interest of thesein vitro glomerular models is validated by fair correlations betweenin vivo andin vitro data and between the responses of both. These models can be considered as tools for assessing glomerular vasoreactivity of nephrotoxic agentsAbbreviations AngII angiotensin II - CsA cyclosporin A - GFR glomerular filtration rate - PSA planar surface area - RBF renal blood flow  相似文献   

4.
Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.  相似文献   

5.
To develop an effective protocol of gene transfer into glomeruli, an ex vivo gene delivery system using rat mesangial cells (RMC) as a vector was examined. RMC genetically engineered with a retrovirus harboring the Escherichia coli -galactosidase gene was used to estimate the efficacy of gene delivery and the location of the cells within the kidney. The RMC expressing -galactosidase, RMCLZ1, was cultured in vitro and the cells were injected into the left kidney through the renal artery of a normal Sprague Dawley rat. At least 1 x 106 RMCLZ1 was required for effective gene delivery into glomeruli. One hour and 1, 4, and 14 d after injection, glomeruli were isolated from the left kidneys injected with the cells and the expression of -galactosidase in each glomeruli was evaluated. One hour and 1 d after injection, more than 90 and 80%, respectively, of glomeruli from the left kidney showed strong -galactosidase activity, while no activity of -galactosidase was found in the glomeruli from the right kidneys. The number of glomeruli stained by X-gal and the intensity decreased with time. Fourteen days after injection, about 35% of the glomeruli retained the RMCLZ1. X-gal and periodic acid-Schiff staining of frozen sections obtained 14 d after injection allowed the estimation of the site where the mesangial cells injected were located. The mesangial cells were found mainly in two different locations, the glomerular capillary and the mesangium. The majority (about 90%) of the mesangial cells were located in the glomerular capillary and about 9% of the cells were in the mesangial area. Occasionally, the positive staining was found in proximal tubules and the interlobular artery. Although additional methods are required for the site-specific targeting of the mesangial area, the ex vivo gene transfer to glomerli uis feasible and may be a useful tool for future investigations in the pathological mechanisms of glomerular injury.  相似文献   

6.
Immunosuppressive agents, such as cyclosporin A (CsA), by their vasoconstrictive properties, induce in vivo in patients and rodents a dramatic fall in renal hemodynamics. The aim of this study is to review the ability of some physiological and/or pharmacological agents which are supposed to be involved in the renal physiopathology of CsA to prevent the contraction induced by CsA in two in vitro glomerular models. Isolated glomeruli are obtained by a sieving method from male Sprague-Dawley rat superficial cortex. Mesangial cells from these isolated glomeruli are cultured in RPM1 1640 medium with 20% FCS in5% CO 2 atmosphere. The area of isolated glomeruli and cultured mesangial cells is assessed by an image analyzer with a video camera. Each glomeruli and cell is its own control and is photographed before incubation with any drug (T0) and then during incubation at 5, 10, 20, and 30 min. Incubations are performed during 30 min with 10–6 mol/L CsA either with a 10 min pretreatment with the vasoactive agent or without pretreatment. CsA alone induces a time- and dose-dependent decrease in glomerular structure area (-4.7% at 10 min,-10.3% at 20 min, and-12.0% at 30 min for isolated glomeruli); Cremophore excipient or control solute does not induce any significant decrease in surface area. CsA with 10–6 mol/L verapamil pretreatment induces only a slight decrease:-1.5% at 10 min,-3.0% at 20 min, and-4.8% at 30 min. Calcium blockers nifedipine and felodipine produce similar results. Likewise with 10–8 mol/L prostacyllin analog (iloprost), only a slight area decrease in mesangial cells is noted:-1.3% at 5 min,-1.8% at 10 min, and-3.3% at 20 min; with 10–6 mol/LTXA2 synthesis imhibitor (CGS 12970) the results are-2.0% at 10 min,-3.6% at 20 min, and-4.3% at 30 min. Finally, a similar protective effect can be noted with 10–5 mol/L theophylline:-0.4;-1.5 and-1.9% at 10, 20, and 30 min.In conclusion, CsA-induced contraction in two in vitro glomerular models can be partially or even totally prevented by pretreatment with various pharmacological agents.Abbreviations CsA cyclosporin A - TX thromboxane - PSA planar surface area  相似文献   

7.
The long pentraxin PTX3 has been recently involved in amplification of the inflammatory reactions and regulation of innate immunity. In the present study we evaluated the expression and role of PTX3 in glomerular inflammation. PTX3 expression was investigated in the IgA, type I membranoproliferative, and diffuse proliferative lupus glomerulonephritis, which are characterized by inflammatory and proliferative lesions mainly driven by resident mesangial cells, and in the membranous glomerulonephritis and the focal segmental glomerular sclerosis, where signs of glomerular inflammation are usually absent. We found an intense staining for PTX3 in the expanded mesangial areas of renal biopsies obtained from patients with IgA glomerulonephritis. The pattern of staining was on glomerular mesangial and endothelial cells. Scattered PTX3-positive cells were also detected in glomeruli of type I membranoproliferative glomerulonephritis. The concomitant expression of CD14 suggests an inflammatory origin of these cells. Normal renal tissue and biopsies from patients with the other glomerular nephropathies studied were mainly negative for PTX3 expression in glomeruli. However, PTX3-positive cells were detected in the interstitium of nephropathies showing inflammatory interstitial injury. In vitro, cultured human mesangial cells synthesized PTX3 when stimulated with TNF-alpha and IgA and exhibited specific binding for recombinant PTX3. Moreover, stimulation with exogenous PTX3 promoted mesangial cell contraction and synthesis of the proinflammatory lipid mediator platelet-activating factor. In conclusion, we provide the first evidence that mesangial cells may both produce and be a target for PTX3. The detection of this long pentraxin in the renal tissue of patients with glomerulonephritis suggests its potential role in the modulation of glomerular and tubular injury.  相似文献   

8.
Summary Taurine is an abundant free amino acid in the plasma and cytosol. The kidney plays a pivotal role in maintaining taurine balance. Immunohistochemical studies reveal a unique localization pattern of the amino acid along the nephron. Taurine acts as an antioxidant in a variety ofin vitro andin vivo systems. It prevents lipid peroxidation of glomerular mesangial cells and renal tubular epithelial cells exposed to high glucose or hypoxic culture conditions. Dietary taurine supplementation ameliorates experimental renal disease including models of refractory nephrotic syndrome and diabetic nephropathy. The beneficial effects of taurine are mediated by its antioxidant action. It does not attenuate ischemic or nephrotoxic acute renal failure or chronic renal failure due to sub-total ablation of kidney mass. Additional work is required to fully explain the scope and mechanism of action of taurine as a renoprotective agent in experimental kidney disease. Clinical trials are warranted to determine the usefulness of this amino acid as an adjunctive treatment of progressive glomerular disease and diabetic nephropathy.  相似文献   

9.
Cyclosporin A induces in vivo a severe nephrotoxicity characterized by a large decrease in renal hemodynamics. The aim of this study is to establish the ability of the known NO donor 3-morpholinosydnomine (SIN-1) to prevent the cyclosporin A-induced contraction by using rat isolated glomeruli and cultured glomerular mesangial cells. Isolated rat glomeruli are obtained from the renal superficial cortex by a sieving method. Mesangial cells are cultured in RPMI 1640 with 15% fetal calf serum. The planar surface area (PSA) of either isolated glomeruli or mesangial cells is assessed using anage analyzer. Each glomerusus or mesangial cell serves as its own control through calculation of the area before any drug incubation and after incubation for 10, 20 and 30 min either in control solution or in control solution with cyclosporin A alone or cyclosporin A and SIN-1. Cyclosporin A (10–6 mol/L) induces an important time-dependent contraction of either glomerulus or mesangial cell. When pretreated with different concentrations of SIN-1 (10–4 to 10–9 mol/L), only a slight size decrease is noted. In conclusion, a direct constrictive effect of cyclosporin A in isolated glomeruli and mesangial cells can be prevented bythe NO donor SIN-1, suggesting an important involvement of the nitric oxide pathway in the cyclosporin A-induced nephrotoxicity.Abbreviations CyA cyclosporin A - SIN-1 3-morpholinosydnonimine - FCS fetal calf serum - PSA planar surface area  相似文献   

10.
The aim of this study was to determine the cadmium-induced immunohistochemical and morphological changes in the renal cortex of adult male rats exposed to high doses of cadmium for 30 d. Animals used as controls received a standard diet and water ad libitum. The animals used for this study received 15 ppm CdCl2 in their drinking water for 1 mo. The mean arterial pressure (MAP), the mean blood Cd level, and the mean tissue Cd content were significantly higher when compared to controls (p < 0.01). Immunohistochemical studies demonstrated a weak labeling to type IV collagen and laminin, but a strong labeling to fibronectin in the renal cortex of the Cd-treated animals when compared to controls. The ultrastructural alterations found in Cd-treated rats were a diminution in the amount of filtration slits, increased fusion of foot processes in epithelial cells of the glomeruli, increase of lysosomal structures and pinocytic vesicles as well as large mitochondria in proximal tubule cells, and degenerated cells in distal tubules. Additionally, the glomerular basement membrane was slightly thickened. In conclusion, cadmium toxicity results in alterations in the renal extracellular matrix and tubular or glomerular cells, which could play an important role in renal dysfunction.  相似文献   

11.
Summary Congenital nephrosis of the Finnish type (CNF) is a hereditary renal disease of unknown aetiology manifested by massive proteinuria of the newborn and unresponsive to any treatment. In this study kidney samples and cultured glomerular mesangial cells from five patients with CNF were studied by indirect immunofluorescence microscopy for the presence and location of major basement membrane matrix (GBM) components. Histological changes of glomeruli ranging from mild thickening of basement membranes to total obliteration and sclerosis were seen. Notably, thickening of the subepithelial layer of Bowman's capsules was regularly seen along with hypercellularity at the juxtaglomerular areas. The matrix components studied (laminin, plasma- and cellular fibronectin, type IV collagen, including the NC-1, alpha-1 and alpha-3 chains, heparan sulphate proteoglycan (HSPG) core protein, thrombospondin) were characteristically seen within the glomeruli. Local thickenings alternating with total loss of epitopes along the GBM were seen, especially with anti-type IV collagen and anti-HSPG antibodies. Sera from CNF patients after transplantation failed to show antibodies against GBM structures in immunofluorescence microscopy, suggesting that no missing epitopes of GBM are introduced with the transplant kidney. Cultured mesangial cells of CNF glomeruli also showed continued in vitro production of the matrix components and their incorporation into the matrix underneath the cell layer.  相似文献   

12.
A novel collagen-gauze-fiber gel was created as a scaffold for the co-culture of renal glomerular epithelial cells and mesangial cells at its opposite sides. This gauze-fiber-gel provides a mimic environment like that of renal glomeruli in vivo. The cell morphology, cell growth and cell viability were investigated and the results showed that this novel scaffold maintains cell growth and cell viability without changing cell morphology for more than 3 weeks. Interestingly, glomerular epithelial cells co-cultured with mesangial cells on the gauze-fiber gel resulted in the polarity formation which usually appears on the normal epithelial cells existing at glomerular basement membrane in vivo, but seldom appears on the epithelial cells when cultured in vitro.  相似文献   

13.
 Extracellular matrix accumulation is crucial in the pathogenesis of glomerulosclerosis in mesangial proliferative glomerulonephritis (GN). In an attempt to explore the distribution of type VI collagen and its synthesizing cells in normal and diseased glomeruli, we investigated mRNA and protein expression of type VI collagen in renal biopsy sections, histologically diagnosed as mesangial proliferative GN. Five renal biopsies from patients diagnosed as having minor glomerular abnormalities and one surgical renal tissue were also simultaneously examined as controls. Immunohistochemical studies revealed type VI collagen immunostaining in the mesangium and glomerular basement membrane of the control glomeruli. Compared to the control, increased deposition of type VI collagen was noted in the mesangial proliferative and sclerotic lesions in GN. To identify the cells responsible for the synthesis of type VI collagen mRNA, renal sections were hybridized in situ with digoxigenin-labeled antisense oligo-DNA probe complementary to a part of α1 (VI) mRNA. Occasionally intraglomerular cells hybridized with digoxigenin-labeled antisense pro α1 (VI) oligo-DNA in control glomeruli. An increased number of intraglomerular cells (mostly epithelial cells) were, however, positive for α1 (VI) mRNA expression in GN sections. The present study documents the distribution of type VI collagen in the normal glomeruli and provides further evidence of accelerated synthesis of this collagen in mesangial proliferative GN. Accepted: 21 July 1998  相似文献   

14.
Spontaneous glomerular lipidosis was found in a 12-week-old male Syrian hamster of the APA strain. Lipids in the glomeruli were observed as droplets in a prominently expanded mesangial area and as emboli in a dilated capillary lumen. Lipid deposition was also, but less often, detected in tubular epithelial cells and interstitial cells around the lipid-laden glomeruli. This case of glomerular lipidosis was considered to be closely related to hyperglycaemia and hyperlipidaemia.  相似文献   

15.
Summary During the reproductive period of the male stickleback, structural and functional changes of the kidney take place, both in the glomeruli and in the renal tubule cells. The structural changes in the glomeruli involve almost all glomerular components and point to a reduction of the glomerular filtration rate. The purpose of this study was to investigate whether these changes are controlled by testosterone, indirectly or directly. In vivo experiments demonstrated that exposure of immature castrates for 8 days to methyltestosterone leads to activation of mesangial cells and podocytes, to slight expansion of mesangial matrix and slight thickening of basal lamina. Observations on cultured renal tissue showed that two androgens, 11-ketotestosterone and methyl testosterone, are also able to stimulate the secretory activity of podocytes and mesangial cells in vitro. The results therefore indicate, that most glomerular changes in male sticklebacks during the reproductive season are directly effected by testosterone.  相似文献   

16.
It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular visceral epithelial and mesangial cells, using molecular probes and antibodies that have recently become available. Special attention was paid to laminin isoforms and to splice variants of the integrin subunits α3 and α6. Results were compared to the in vivo expression in human fetal, newborn and adult kidneys.

The mesangial cells were found to produce laminin-1, nidogen and two as yet unidentified laminin isoforms with putative α chains of about 395 (m) and of 375 kDa (cry), tentatively described before as bovine kidney laminin. Furthermore, they expressed the integrins α1β1, α2β, α3Aβ1, α5β1, αvβ3, αvβ5, and small amounts of α6Aβ1 and α6Bβ1. The glomerular visceral epithelial cells produced the two new laminin isoforms mentioned above, laminin-5, but no laminin-1 or nidogen. The integrins α2β1, αAβ1, α6Aβ4, αBβ4 and the integrin subunit av were found to be expressed.

We show that during nephrogenesis, the laminin α1 chain disappears and is replaced by another a chain, possibly one of the two as yet unidentified α chains mentioned above. The laminin β1 chain is replaced by the β2 chain somewhat later in glomerular development. In general, the integrins found to be expressed in glomeruli of adult kidney were consistent with those found in cultured glomerular visceral epithelial and mesangial cells. No splice variant switch of the integrin α3 or α6 subunits could be demonstrated during nephrogenesis.

Our results suggest an important role for the mesangial cell in providing nidogen as a crucial component of the supramolecular stucture of the glomerular basement membrane. Furthermore our results indicate that laminin αxβ2γ1 and αβ2γ1 isoforms are important in the glomerulus of adult kidney and that the integrin α3Aβ1 is the main integrin receptor for laminin isoforms on glomerular visceral epithelial and mesangial cells, both in vitro and in vivo.  相似文献   

17.
Numerous studies have investigated specific pathways that link diabetes and high extracellular glucose exposure to glomerulosclerosis and mesangial cell extracellular matrix production. However, only in the past ten years has a role for glucose transporters in this process been addressed. Many different glucose transporters are expressed in glomeruli; of these, the GLUT1 facilitative glucose transporter is upregulated in the diabetic renal cortex and in response to glomerular hypertension, as well as in cultured mesangial cells exposed to high glucose. Transgenic mouse and cell models have recently been developed to test the role of GLUT1 in the pathogenesis of glomerulosclerosis with and without diabetes. Clinical studies of GLUT1 alleles performed in humans have identified GLUT1 susceptibility alleles for diabetic nephropathy. Studies are also currently under way to assess the potential role of GLUT1 in nondiabetic renal disorders.  相似文献   

18.
Renal corpuscles from the juxtamedullary and subcapsular regions of the renal cortex were morphometrically analyzed in young rats and in adult rats that had been unilaterally nephrectomized or sham-operated at an early age. Mean corpuscular volumes increased 4.5-fold during normal development, and 7.7-fold as a result of compensatory hypertrophy in both cortical regions. Relative and absolute volumes were determined for Bowman's space, the glomerular tuft, and five glomerular components: epithelial, endothelial, and mesangial cells, capillaries, and the filtration membrane. Normal and hypertrophic enlargement of Bowman's space was slightly greater than glomerular growth, and the growth response of subcapsular glomeruli was greater than that of juxtamedullary glomeruli. The ratio of mean glomerular volumes between outer and inner glomeruli was 1:2 in both adult groups. Both adult groups also developed nearly identical proportions of all glomerular component structures, representing a relative decrease of epithelial cells and increase of capillaries compared to the young animals. Normal and hypertrophic maturation involved absolute increases in all glomerular cell populations, the length of capillary loops and the surface area of the filtration membrane, all nearly in proportion to the respective four- and seven-fold increases in glomerular volume. Changes in the filtration surface area are consistent with published data for glomerular filtration rates in normal and hypertrophied kidneys. The mean cell size in epithelial and mesangial populations doubled during growth, but was not greater than normal in mononephrectomized rats. Hyperplasia among all populations of glomerular cells is indicated in normal growth, and to a greater extent in compensatory renal hypertrophy.  相似文献   

19.
Summary Cisplatin (CDDP)-sensitive and -resistant human ovarian cells were studied in vitro with the objective of enhancing CDDP cytotoxicity by the addition of a metal and the chelate ethylenediaminetetraacetic acid (EDTA), to the CDDP. Chelateable elements, such as bismuth, calcium, cadmium, copper, iron, magnesium, selenium, vanadium, and zinc, when added to CDDP and in the presence of EDTA increased the cytotoxicity of the CDDP as compared to CDDP treatment alone.  相似文献   

20.
Random bred Swiss-Webster mice were immunized with either autologous (MFN) or heterologous guinea pig (GPFN) denatured serum fibronectin. Immunofluorescent, light and electron microscopic examination of renal tissues demonstrated glomerular changes, consisting primarily of endothelial and mesangial cell hypertrophy with expansion of the mesangial matrix. Evagination of mesangial cytoplasm into capillary lumens and balloon-like structures were characteristic of affected glomeruli. The histopathologic alterations were present in varying degrees of severity of all fibronectin treated animals, with slightly more extensive glomerular proliferation seen in animals immunized with heterologous (GPFN) fibronectin as compared to mice immunized with autologous (MFN) protein. Perivascular mononuclear cell infiltration with edematous changes in medial smooth muscle cells occurred in renal vessels. The vasculature of the liver and lung also showed mononuclear cell infiltrates in the adventitia. These studies lead us to conclude that an immune response to either heterologous or autologous denatured serum fibronectin can induce glomerular sclerotic changes, cellular hyperplasia, and vascular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号