首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Aquatic ecologists use mesocosm experiments to understand mechanisms driving ecological processes. Comparisons across experiments, and extrapolations to larger scales, are complicated by the use of mesocosms with varying dimensions. We conducted a mesocosm experiment over a volumetric scale spanning five orders of magnitude (from 4 L to whole ponds) to determine the generality of algal responses to nutrient enrichment. Recognising that mesocosm dimensions may affect algal growth, we also manipulated the ratio of mesocosm surface area to volume (SA : V) over two levels (high versus low). We used mesocosm tanks of similar size and construction to those commonly used in aquatic experiments to increase the generality of our results. 2. Volume was generally a stronger determinant of algal responses than mesocosm shape (i.e. SA : V). However, the effects of both volume and shape on algae were weak and explained a small portion of the variance in response variables. In addition, there was no consistent, directional relationship (positive or neutral) between mesocosm volume and algal abundance (estimated by chlorophyll concentration). Combined, our findings suggest that results from small‐scale experiments, examining the direct response of algae to nutrient enrichment, can probably be ‘moved on up’ and applied to larger, more natural aquatic systems. 3. Algal response to nutrient enrichment (e.g. nutrient use efficiency and effect size) varied strongly with time. This underscores the importance of choosing an experimental timescale appropriate to the biological and/or ecological process of interest. 4. We compared our results to those from a recent meta‐analysis of nutrient‐limitation studies that included 359 freshwater pelagic experiments, spanning a wide range of volumetric and temporal scales. Similar findings between this experiment and the meta‐analysis indicate that algal response to nutrient enrichment varies little across spatial scales. Therefore, it is probable that results from small‐scale pelagic algal nutrient‐limitation experiments are relevant to large‐scale processes, such as eutrophication.  相似文献   

2.
Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 μm3). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm. Received: 21 January 1999; Accepted: 12 April 1999  相似文献   

3.
Trees are usually grown in containers in the nursery until they reach a certain size, whereupon they are transplanted to a permanent location. Infrastructure development has often led to the removal of large trees. To maintain lush foliage and trees of a size that benefit urban ecology, trees can be grown in containers. Containerized trees can be moved from one location to another, and this relocation does not require root pruning or crown-size reduction. The drawback to having trees in containers is the small and confined volume of the container, which limits tree root development and thus affects containerized tree stability. The objective of this study was to understand the failure mechanisms for and the effect of the root dimensions on the stability of containerized trees. Therefore, small-scale stability model tests were conducted which were verified using numerical and analytical models. The results identified two failure modes that were likely to occur: tree overturning and container overturning. The mode of failure was dependent on the root dimensions. When the trees had extended their roots deep into the container, the whole container would overturn in the event of failure due to increased root confinement and shear resistance of the soil. On the other hand, the main failure mechanism when there was shallow root development was the uplifting of the tree from the container while the container remained upright. The results from numerical and analytical models were consistent with those obtained during the small-scale model stability tests.  相似文献   

4.
An experimental study was performed to disentangle parental and environmental effects on the growth of Atlantic cod Gadus morhua larvae and juveniles. Eggs were collected during the spawning season from spawning pairs (families) kept separately in specially designed spawning compartments. Newly hatched larvae were released simultaneously into two mesocosms of 2500 and 4400 m3. Larval growth was monitored by sampling over a 10 week period, after which juveniles were transferred to on-growing tanks, where they were tagged and kept for up to 2 years. Maternal origin was determined by individual microsatellite genotyping of the larvae ( n = 3949, 24 families) and juveniles ( n = 600). The results showed significant positive correlations between egg size and larval size during the whole mesocosm period. Correlations, however, weakened with time and were no longer significant at the first tank-rearing sampling at an age of 9 months. Significant family-specific differences in growth were observed. The coefficient of variation ( c.v. ) was calculated in order to examine variation in standard length of larvae during the mesocosm period. Inter-family c.v. was on average 69% of intra-family c.v. Differences in zooplankton densities between the two mesocosms were reflected in larval growth, condition factor and c.v. Low food abundance appeared to reduce c.v. and favour growth of larvae that showed relatively slow growth at high food abundance. It is suggested that genetically determined variation in growth potential is maintained by environmental variability.  相似文献   

5.
Planktivorous fish, both visual predators and filter feeders, enhance eutrophication processes in lakes. In pampean shallow lakes several planktivorous species may coexist but often two species dominate: silverside (Odontesthes bonariensis), a visual planktivorous fish when young adult, and sabalito (Cyphocharax voga), an omnivorous filter feeder. To assess the relative strength of the cascading trophic effects of the two species, a mesocosm experiment was conducted using different proportions of both species as treatments. Differences were found in water transparency, phytoplankton biomass, crustacean abundance, individual size and biomass. Our results suggest that visual predators intensify eutrophication effects more strongly than filter feeders do.  相似文献   

6.
Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities.  相似文献   

7.
The paper describes a new type of zooplankton sampler, which combines the concepts of the Pennak core sampler and the Schindler-Patalas plankton trap. The new sampler, called Trap Tube Sampler, consists of a PVC water pipe (1.5–2.0 m, long; 10 cm diameter) provided, at the bottom end, of a filtering unit and closing mechanism which alternatively closes the mouth of the tube and the mouth of the filtering unit. The new device is particularly suitable for collecting samples from the entire water column in shallow vegetated water bodies, fish ponds and mesocosm tanks.  相似文献   

8.
Summary Eye diameter relative to body length, and interommatidial angle, rhabdom length and rhabdom width as a function of eye size, were determined for specimens of 19 benthic macruran decapod species in 8 genera and 5 families, spanning a wide range of habitat depths. For these species, eye diameter relative to body length tends to increase with adult habitat. In addition, rate of eye growth relative to body growth increases with habitat depth, a trend opposite to that of pelagic crustaceans previously investigated. Interommatidial angle decreases with increasing eye diameter, and therefore with depth for an individual of a particular size. Rhabdom length and width tend to increase with eye diameter. Visual sensitivity may increase with depth among these species as a result of both larger eyes and the associated increase in rhabdom dimensions. Differences in energetic limitations and visual environments might produce the difference in trends of eye size relative to body size between benthic and pelagic crustaceans.  相似文献   

9.
Diel changes in the specific growth rates of natural bacterial communities as a whole and of different groups within the communities were followed over 2 days during July 1982, in stratified waters in the vicinity of a shallow sea tidal mixing front in the Irish Sea. Waters well above (4 m) and below (60 m) the thermocline were enclosed in dialysis bags and incubated in situ. The results show that there were periods of altered growth rates of the whole bacterial community and synchronous cell division of morphological groups. An increase in mean cell volume within both 4 and 60 m communities preceded an increase in specific growth rates, with a resultant decrease in the mean cell volume. Above the thermocline the whole bacterial community, as well as the rod and coccoid forms, doubled in number once a day. The doubling time of the whole bacterial community at 60 m was 2 days and slower than that at 4 m. This was due to a slower doubling time (3 days) for the coccoid forms. Rod forms at the two depths had a similar doubling time (1 day). The time of day when maximum division rate occurred was also different in the two water masses. At 4 m more coccoid forms divided during the night, whereas at 60 m more divided during the day. Conversely, at 4 m more rod forms divided during the day, whereas at 60 m more divided at night.These data indicate that the bacterial community and members of the community may be adapted to exploit the diurnal rhythms of dissolved organic carbon (DOC) release by other organisms and that portions of the bacterial community may therefore be more active at certain times of the day. The diurnal growth of the bacterial community may thus vary between different water masses and largely reflects the differences in the chemical and biological characteristics of the two water masses investigated.  相似文献   

10.
An artificial salt marsh mesocosm was constructed using 680-L polypropylene tanks to determine the effect of soil drainage depth and organic content on growth and rhizome proliferation of the salt marsh smooth cordgrass Spartina alterniflora. Soil drainage depth had no effect on accumulation of aerial or subsurface plant tissue, but tanks that had 2.5% soil organic content supported enhanced aerial tissue and rhizome growth compared to tanks that contained sand alone. We propose a mathematical model for predicting the mass of photosynthetically significant leaf tissue without cutting and drying leaves. Implications of these findings for salt marsh creation projects are discussed.  相似文献   

11.
Consumption and growth rates of juvenile bluefish Pomatomus saltatrix increased with increasing temperature and decreased with increasing fish size in short-term (7 days) experiments. Salinity had no effect on growth or consumption rate in a short-term experiment. In a long-term (90 days) mesocosm experiment, consumption and growth rates declined with increasing body size. Predictive equations developed from short-term experiments did not adequately predict observed consumption rates in the mesocosm experiment. However, growth in the mesocosm experiment was similar to field growth. Also, mesocosm consumption rates and consumption rates calculated using field growth and mesocosm growth efficiencies were similar to published independent field estimates of consumption rate. Our results indicate that experiments to determine the effects of temperature and the allometry of body size on growth and consumption rates should be conducted over long time periods simulating field conditions. Juvenile bluefish have rapid growth and their individual cumulative consumption is large. This result suggests that bluefish may have a large effect on their prey populations. This effect has yet to be quantified.  相似文献   

12.
Evaluating the factors that regulate bacterial growth in natural ecosystems is a major goal of modern microbial ecology. Phytotelm bromeliads have been used as model ecosystems in aquatic ecology as they provide many independent replicates in a small area and often encompass a wide range of limnological conditions. However, as far as we know, there has been no attempt to evaluate the main regulatory factors of bacterial growth in these aquatic ecosystems. Here, we used field surveys to evaluate the main bottom-up factors that regulate bacterial growth in the accumulated water of tank bromeliads. Bacterial production, water temperature, water color, chlorophyll-a, and nutrient concentrations were determined for 147 different tank bromeliads in two different samplings. Bromeliad position and the season of sampling were also noted. Bacterial production was explained by ion ammonium concentration and water temperature, but the total variance explained was low (r 2 = 0.104). Sampling period and bromeliad position were included in additional models that gave empirical support for predicting bacterial production. Bromeliad water tanks are extremely variable aquatic ecosystems in space (among bromeliads) and time (environmental conditions can change within hours), and it is well known that bacterial production responds rapidly to environmental change. Therefore, we concluded that several factors could independently regulate bacterial growth in phytotelm bromeliads depending on the characteristics of each bromeliad, such as location, amount of detritus, and ambient nutrient concentrations. A clear bottom-up limitation pattern of bacterial production in tropical phytotelm bromeliads was not found. Handling editor: Luigi Naselli-Flores  相似文献   

13.
Daily bacterial abundance and production, heterotrophic nanoflagellates (HNAN) abundance, chlorophyll, and NH4 + concentrations were measured in four indoor 400-liter tanks over 13 days to study the role of heterotrophic bacterioplankton in NH4 - cycling and to identify the succession of top-down and bottom-up processes in regulating bacterial biomass and production. Ammonium (NH4 +) was added to these four tanks daily whenever its concentration in tanks was < 4 m. Tanks 3 and 4 (treatment tanks) also received 4 m of glucose daily till the end of experiment. Lower NH4 - concentrations and higher bacterial specific growth rate and production observed in the treatment tanks indicated that bacteria might take up NH4+ with the addition of labile organic carbon. Bacterial biomass was controlled by substrate supply and HNAN grazing from day 7 to day 13, when phytoplankton declined. Bacterial size distribution patterns were determined primarily by substrate supply, with HNAN grazing playing a less important role. Certain variabilities existed between the control (and the treatment) tanks. These inconsistencies could be due to differences in time of expression of given variables. However, the total amounts of bacterial biomass accumulated in the four tanks were very similar. The inconsistency in timing of expression of variables was probably due to different initial conditions in each tank. The ecological meanings of the inconsistency in timing and overall consistency were discussed. Correspondence to: F.-K. Shiah  相似文献   

14.
Altermatt F  Ebert D 《Oecologia》2008,157(3):441-452
Dispersal is a key process in metapopulations, as migrants genetically connect populations and enable the colonization of empty habitat patches. Sub-populations may differ in their numerical contribution of migrants within a metapopulation. This has strong implications on evolutionary and ecological dynamics and has led to two different hypotheses about the Daphnia metapopulation studied here: the assessment by some authors is that sub-populations contribute equally to the production of migrants, while others have postulated long-lived core populations in large "mainland" habitat patches as the dominant source of migrants. We have studied the resting and dispersal stage (ephippium) in a natural Daphnia metapopulation and in mesocosm experiments, and tested for effects of habitat size and summer desiccation. We found that a 1000-fold increase in rock pool volume resulted on average in only in a 2.8-fold increase in ephippium production. Mesocosm experiments confirmed these results: a 1000-fold increase of the mesocosms' volume resulted in a 7.2-fold increase in ephippium production. Additionally, we showed that ephippium production did not depend on the initial population size. Thus, populations in small pools may contribute only marginal fewer potential migrants in the whole metapopulation than populations in large pools. In a second mesocosm experiment we found that summer desiccation, which is a typical occurrence in small pools, is not detrimental for the populations. Daphnia hatched out of ephippia that were produced earlier within the same season and built up viable populations again. The substantial production of ephippia by populations in small pools suggests that these populations might be important for both the dynamics and global stability of metapopulations.  相似文献   

15.
The presence of predators can impact a variety of organisms within the ecosystem, including microorganisms. Because the effects of fish predators and their phenotypic differences on microbial communities have not received much attention, we tested how the presence/absence, genotype, and plasticity of the predatory three‐spine stickleback (Gasterosteus aculeatus) influence aquatic microbes in outdoor mesocosms. We reared lake and stream stickleback genotypes on contrasting food resources to adulthood, and then added them to aquatic mesocosm ecosystems to assess their impact on the planktonic bacterial community. We also investigated whether the effects of fish persisted following the removal of adults, and the subsequent addition of a homogenous juvenile fish population. The presence of adult stickleback increased the number of bacterial OTUs and altered the size structure of the microbial community, whereas their phenotype affected bacterial community composition. Some of these effects were detectable after adult fish were removed from the mesocosms, and after juvenile fish were placed in the tanks, most of these effects disappeared. Our results suggest that fish can have strong short‐term effects on microbial communities that are partially mediated by phenotypic variation of fish.  相似文献   

16.
Newly hatched autumn-spawned herring larvae Clupea harengus were released in two 2500-m3 outdoor mesocosms and reared over a 2-month period. Hydrographic conditions were similar in the two mesocosms, but the average plankton density was initially more than 10 times higher in mesocosm B compared to mesocosm A (>11−1 v. <0.11−1). Half-way through the experiment the feeding conditions reversed with three times higher average densities in mesocosm A than in mesocosm B (>31−1 v. ∼11−1). Herring larvae were sampled with a 0.3-m2 two-chambered net twice weekly, and survivors were harvested by draining the mesocosms at the end of the experiment. Otolith growth trajectories of individual larvae were determined by relating radial otolith size with number of increments from the outer edge of the otolith (days before capture). The increment widths during the first 3 weeks after hatching, including the first-check size, were generally wider among larvae from mesocosm B (relatively good initial feeding conditions) than among those from mesocosm A (poor initial feeding conditions). The otolith growth pattern also confirmed that the surviving herring in mesocosm A belonged to the upper size range of larvae in the mesocosm after only 2–3 weeks from hatching; no such trend was found in mesocosm B. In both mesocosms the otolith size-at-age indicated that with the present sampling gear, herring larvae larger than 20–25 mm were underrepresented in the net samples. The information obtained from otolith-size-at-age is compared with other morphometric and biochemical measures of size and condition of larvae obtained throughout the experiment.  相似文献   

17.
The effect of nutrient enrichment on the distribution of polychlorinated biphenyl's (PCBs) in the microbial food web and the residence time of PCBs in seawater was studied in an experimental mesocosm system. Two 5 m high temperature and light controlled mesocosm tubes (⊘ = 0,5 m) were filled with seawater from the northern Baltic Sea. Inorganic phosphorus and nitrogen were added daily to one mesocosm, while the other served as a control. Experiments were conducted at 5, 10 and 20°>C. Three 14C-labelled PCBs of different degree of chlorination were added to subsamples of the mesocosms: 4 chlorobiphenyl (MCB), IUPAC # 3; 2,2′,5,5′-tetrachlorobiphenyl (TCB), IUPAC # 52 and 2,2′, 4,4′,5,5′-hexachlorobiphenyl (HCB) IUPAC # 153. The biomasses and growth rates of the microorganisms as well as the sedimentation rate of particulate organic material increased with nutrient enrichment. The size distribution of the microorganisms changed with nutrient status, from dominance of picoplankton (< 2 μm) in the control towards increased importance of micro (> 10 μm) and nanoplankton (2– 10 μm) in nutrient enrichment. The specific growth rate of the bacterial community was found to be more temperature dependent than that of the phytoplankton community. The relative proportion of PCBs in the >2 μm fraction was observed to be in the order MCB < TCB < HCB, while the opposite distribution prevailed in the < 2 μm fraction. We hypothesize that this is due to the combined effect of the different Kow values of the PCBs and a different composition of the particulate organic carbon in the > 2 μm and < 2 μm fractions (e.g. different lipid composition). The residence time of the PCBs in the mesocosm generally decreased with nutrient enrichment, but was dependent on the degree of chlorination of the PCB. Our results indicate that the transport of organic pollutants up through the food web is more important in nutrient poor than in nutrient rich waters and that the importance of sedimentation is higher in eutrophic ecosystems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

19.
Survivorship and fecundity in the forest herb, Viola sororia, are size-dependent. The basis of size variation among individuals of Viola sororia was investigated with a uniform environment experiment. Plants collected from natural populations were vegetatively reproduced and grown under two light regimes in a greenhouse. Analysis of quantitative variation showed: 1) significant differences between light treatments for characters related to plant shape and relative growth rate; 2) significant among-genet variation for plant size, plant shape and relative growth rate but none for physiological characters; and 3) a size threshold for cleistogamous seed production and rhizome production. Heritability estimates for the characters associated with plant size and shape ranged from 0.09 to 0.39, indicating significant genetic determination for these traits. In addition, among-genet differences in relative growth rate were substantial. The results of this study suggest that the size variation found in natural populations is not solely a function of environmental heterogeneity but is significantly influenced by the genotypes composing the population.  相似文献   

20.
Three tropical seagrass species were planted into 1.5 m2 culture tanks and grown under the same conditions for 2 years. New shoot production and vegetation growth of both Syringodium filiforme Kütz. and Halodule wrightii Aschers. resulted in complete cover in monoculture tanks within the first year. The vegetative spread of Thalassia testudinum Banks ex König was slower than that of the other species. The culture of seagrasses in open mesocosm systems was most successful when continuous current circulation was maintained, water column nutrients were kept low, and extreme high temperatures (> 36°C) were avoided. Seagrass colonized and grew equally well in Indian River mud substratum and in quartz sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号