首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Measurement of protein turnover in rat liver   总被引:18,自引:0,他引:18  
  相似文献   

2.
Measurement of acetylcholine turnover rate in discrete areas of rat brain   总被引:6,自引:0,他引:6  
The turnover rate of ACh was estimated in brain stem, two cortical areas and striatum of rat brain. The turnover rate was highest in the striatum (1.3 μmoles/g/hr); lowest in brain stem (0.092 μmoles/g/hr); and intermediate values were observed in limbic and occipital cortex. The highest ACh concentrations were measured in striatum, those in brain stem were intermediate but in the two cortical areas the ACh concentrations were the lowest. The results of the turnover estimations with the finite difference method yielded values similar to those obtained with the procedure described in this paper. Moreover, once the baseline was established, this method could be reliably used to estimate turnover rate using a single infusion time. The latter simplication would be very useful to compare ACh turnover rate in drug studies.  相似文献   

3.
The turnover of protein in discrete areas of rat brain   总被引:4,自引:3,他引:1  
1. Rats were injected serially with [(14)C]glucose to obtain a constant specific radioactivity of brain amino acids. Measurements with this system for periods of up to 8h gave an apparent mean half-life for protein in whole brain of 85h (indicating the presence of a protein fraction with much more rapid turnover than this). 2. The half-lives of proteins in the granule-cell, molecular and white-matter layers of cerebellum were also determined. These had values of 33, 59 and 136h respectively. In addition, the incorporation into protein in six layers of the cerebral cortex, subjacent white matter and five layers of Ammon's horn was studied. All cell-body layers incorporated amino acids at about the same rate irrespective of location, and these rates were considerably higher than those for incorporation into proteins in areas rich in dendrites or fibre tracts. 3. A new method for measuring small amounts of glutamate with a cyclic enzyme system is presented.  相似文献   

4.
L.M. Neckers  J.L. Meek 《Life sciences》1976,19(10):1579-1584
Five non-isotopic methods of measuring serotonin turnover rate in vivo were compared in discrete nuclei of rat brain. The concentration of serotonin or 5-hydroxyindoleacetic acid was measured by high pressure liquid chromatography in the raphe nuclei, caudate nucleus and hippocampus of rats at various times after the injection of pargyline, probenecid, RO 4/4602 or α-propyldopacetamide. The turnover rate is more rapid in the cell bodies than in axon terminals.  相似文献   

5.
6.
Relative turnover of tubulin subunits in rat brain   总被引:3,自引:0,他引:3  
  相似文献   

7.
Polyamine turnover in different regions of rat brain   总被引:7,自引:6,他引:1  
The dynamics of the formation and disappearance of polyamines in rat brain have been examined after intraventricular administration of a tracer dose of [3H]putrescine. After 2 days [3H]putrescine was no longer detectable in any brain region examined. [3H] Spermidine and [3H] spermine were formed in all brain areas. In the midbrain, hypothalamus and cerebellum (regions which manifested the greatest initial accumulation of tritium) the specific radioactivity of spermidine declined with a half-life of 16-19 days. However, in areas with a low initial accumulation of tritium (the medulla-pons, internal capsule, cerebral cortex and corpus striatum) the specific radioactivity of spermidine changed very little between 2 and 19 days after the putrescine administration. Levels of [3H]spermine increased continuously in all brain areas for a 14-day period after the putrescine injection.  相似文献   

8.
Feeding of protein deficient diet is known to alter the transmembrane signalling in brain of rat by reducing total protein kinase C (PKC) activity. Phospholipid metabolism regulates the activation of PKC through generation of second messengers and the extent of PKC activation accordingly influences the magnitude of phosphorylation of its endogenous substrate proteins. Thus it was speculated that ingestion of protein deficient diet may modify the turnover rate of membrane phospholipids and magnitude of phosphorylation of endogenous substrate proteins of PKC. The experiments were conducted on rats fed on three different types of laboratory prepared diets viz. casein (20% casein), deficient (4% protein, rice flour as source of protein) and supplemented (deficient diet supplemented with L-lysine and DL-threonine) for 28 days. The metabolism of phosphoinositides (PIs) and phosphatidyl choline (PC) was studied by equilibrium labeling with [3H] myo inositol and [14C methyl] choline chloride respectively. The phosphorylation of endogenous substrate proteins of PKC was studied by using 32P-gamma-ATP followed by SDS-PAGE and autoradiography. The results suggest that in deficient group, there is an increased incorporation of [3H] myo inositol in PIs and inositol phosphate pool in comparison to the casein group. The phosphatidyl inositol (PI) turnover reduced, although there was a marginal increase in the phosphatidyl inositol monophosphate (PIP) and phosphatidyl inositol bis phosphate (PIP2). Supplementation of diet showed a reversal of the pattern towards control to a considerable extent. In the deficient group, PC metabolism showed an increased incorporation of [14C methyl] choline in choline phospholipids but decreased incorporation in phosphoryl choline in comparison with the casein group. The increase in total PC contents was significant but marginal in residue contents. The turnover rate of PC increased only marginally and that of residue declined. Supplementation of diet reduced the total contents of PC and residue, but the turnover rate of PC and residue remained still higher. Phosphorylation of endogenous proteins showed four different proteins of 78, 46, 33 and 16 kDa to be the substrates of PKC in casein group. In deficient group, phosphorylation of these proteins increased markedly while supplementation of diet had a reversing effect rendering the values to be intermediate between casein and the supplemented group. The changes in phospholipid metabolism and in phosphorylation of endogenous substrate proteins of PKC suggest that dietary protein deficiency causes alterations in transmembrane signalling mechanism in rat brain. These effects are partially reversed by improving the quality of proteins in the diet.  相似文献   

9.
Seizures were induced in rats by intraperitoneal injection of pentylenetetrazole (PTZ, 70 mg/kg), followed, 30 min later, by injection of [1-13C]glucose and [1,2-13C]acetate. Analyses of extracts from cortex, subcortex and cerebellum were performed using 13C magnetic resonance spectroscopy and HPLC. It could be shown that PTZ affected different brain regions differently. The total amounts of glutamate, glutamine, GABA, aspartate and taurine were decreased in the cerebellum and unchanged in the other brain regions. GABAergic neurones in the cortex and subcortex were not affected, whereas those in the cerebellum showed a pronounced decrease of GABA synthesis. However, glutamatergic neurones in all brain regions showed a decrease in glutamate labelling and in addition a decreased turnover in cerebellum. It could be shown that this decrease was in the metabolic pool of glutamate whereas release of glutamate was unaffected since glutamine labelling from glutamate was unchanged. Aspartate turnover was also decreased in all brain regions. Changes in astrocyte metabolism were not detected, indicating that PTZ had no effect on astrocyte metabolism in the early postictal stage.  相似文献   

10.
Kappa opioid receptors stimulate phosphoinositide turnover in rat brain   总被引:4,自引:0,他引:4  
S Periyasamy  W Hoss 《Life sciences》1990,47(3):219-225
The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The kappa-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other kappa-agonists Dynorphin-A (1-13) amide, and its protected analog D[Ala]2-dynorphin-A (1-13) amide also produced a significant increase in the formation of [3H]-IP's, whereas the mu-selective agonists [D-Ala2-N-Me-Phe4-Gly5-ol]-enkephalin and morphine and the delta-selective agonist [D-Pen2,5]-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the kappa-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medulla. The results indicate that brain kappa- but neither mu- nor delta-receptors are coupled to the PI turnover response.  相似文献   

11.
V.N. Hari Prasad  Terry W. Moody   《Peptides》1988,9(6):1345-1349
The ability of bombesin (BN)-like peptides to stimulate phosphatidylinositol turnover in rat brain slices was investigated. BN (1 μM) significantly stimulated inositol-1-phosphate (IP1) but not inositol-4,5-biphosphate (IP2) or inositol-1,4,5-trisphosphate (IP3) production using frontal cortex slices in the presence of LiCl (7.5 mM); BN had no effect on cAMP or cGMP levels. BN and the structurally-related gastrin releasing peptide (GRP) elevated IP1 levels in a dose-dependent manner. Similarly, nanomolar concentrations of the GRP fragment (Ac-GRP20–27) significantly elevated IP1 levels, whereas micromolar concentrations of the inactive GRP1–16 did not. BN significantly elevated IP1 levels in those brain regions enriched in BN receptors such as the olfactory bulb, hippocampus, striatum, thalamus and frontal cortex, whereas IP1 levels were not significantly increased in areas which have a low density of BN receptors such as the cerebellum, medulla/pons and midbrain. These data suggest that CNS BN receptors may utilize phosphatidylinositol as a second messenger.  相似文献   

12.
13.
14.
The effect of baclofen and clonidine, both individually and in combination, on noradrenaline turnover was examined in several brain regions as well as in the spinal cord using the -methyl-p-tyrosine depletion method. Baclofen (30–50 mg/kg) consistently increased the turnover of noradrenaline in the cortex, hippocampus and spinal cord and this effect was stereoselective for thel-isomer. Clonidine (0.1 mg/kg) decreased noradrenaline turnover in these regions and reversed the effect of baclofen. In the striatum, baclofen (50 mg/kg) decreased the turnover of dopamine in a stereoselective manner. Clonidine (0.1 mg/kg) did not alter dopamine turnover but potentiated the effect of baclofen. These results support behavioural data which suggests that baclofen interacts with central noradrenergic pathways. The nature of such interactions appears to be complex.  相似文献   

15.
16.
Extraction, purification and turnover of rat brain glycogen   总被引:2,自引:2,他引:0  
Abstract— Glycogen was prepared from rapidly frozen rat brain by the usual techniques and found to contain considerable amounts of non-glycogen carbohydrate. The crude glycogen was partially purified by extraction with hot or cold water and reprecipitation. Enzymic estimation showed that the carbohydrate extracted into hot water contained only 50 per cent of glucose after hydrolysis; of the hot water insoluble material, namely some 30 per cent of the total carbohydrate present in the crude glycogen, less than half of the carbohydrate was released by hydrolysis in 1 M-HC1. The glycogen soluble in hot water incorporated 14C from [14C]glucose at considerably higher rates than the residual material and also decreased more rapidly during post-mortem autolysis. Glycogen extracted into cold water was of higher purity than that extracted by hot water; although the material behaved as glycogen during precipitation and re-extraction it contained only 75 per cent of its carbohydrate as glucose. Contaminants included fucose, galactose and hexuronic acid. The rates of metabolism of the partially purified glycogen are compared with published rates; it is suggested that the observed rates are inaccurate due to the impurities present in brain glycogen prepared by classical techniques.  相似文献   

17.
M F Sugrue 《Life sciences》1980,26(6):423-429
Changes in rat brain monoamine turnover were studied following the chronic administration of five agents which markedly differ in their patterns of monoamine uptake inhibition. Compounds (10 mg/kg, i.p.) were injected once daily for 14 days and experiments undertaken 24 h after the last injection. Chronic administration of desipramine or mianserin elevated brain MOPEG-SO4 content and the α-MT-induced reduction in brain NA levels was enhanced by chronic desipramine. either antidepressant altered turnover of brain DA or 5-HT. Steady state levels of brain 5-HIAA or striatal levels of DOPAC or HVA were also unchanged. Chronically administered Org 6582, a selective inhibitor of 5-HT uptake, decreased basal and attenuated the probenecid-induced increase iin brain 5-HIAA levels. Chronic Org 6582 had no effect on NA or DA turnover and on the levels of MOPEG-SO4, DOPAC or HVA. Neither maprotiline nor chlorimipramine altered turnover of NA, DA or 5-HT or levels of metabolites. Thus, in contrast to the acute situation, chronically administered desipramine increases rat brain NA turnover. Conversely, acute and chronic Org 6582 administration yield similar findings, viz. a decrease in turnover. These observations suggest that rat brain 5-HT systems are more resistant than NA systems to adaptive changes following a prolonged inhibition of monoamine uptake.  相似文献   

18.
The involvement of cholinergic neurons in the brain processes underlying reinforcement has been recently demonstrated. This experiment assessed the potential role of cholinergic neurons in cocaine reinforcement by measuring the turnover rates of acetylcholine in brain regions of rats self-administering cocaine and in yoked cocaine and yoked vehicle-infused controls. The activity of cholinergic innervations of and/or interneurons in the olfactory tubercle, caudate putamen, diagonal band-pre-optic region, ventral pallidum, lateral and medial hypothalamus, hippocampus, ventral tegmental area and visual cortices reflected by the turnover rates of acetylcholine were significantly altered in rats self-administering cocaine compared to yoked cocaine infused controls. These changes implicate the involvement of cholinergic neurons with cell bodies in the diagonal band-pre-optic region, the medial septum and several brainstem nuclei and interneurons in the caudate-putamen and ventral pallidum in the processes underlying cocaine self-administration. The identified cholinergic neuronal systems may have a broader role in the brain processes for natural reinforcers (i.e. food, water, etc.) since drugs of abuse are believed to produce reinforcing effects through these systems.  相似文献   

19.
Induction of cardiac work increased protein synthesis in hearts supplied glucose or a mixture simulating normal plasma levels of glucose, insulin, glucagon, lactate, and beta-hydroxybutyrate. During 2 h of perfusion, cardiac work did not accelerate protein synthesis in hearts supplied a mixture of glucose, lactate, and higher concentrations of insulin. Protein degradation was decreased by work in hearts supplied glucose. Nitrogen balance was negative in Langendorff-perfused hearts provided glucose, but was less so in working preparations. Nitrogen balance was zero or positive in working hearts provided the mixture simulating plasma or the mixture of glucose, lactate, and insulin. In Langendorff preparations, increased aortic pressure accelerated protein synthesis during the second hour of perfusion in hearts supplied glucose, glucose plus insulin, or pyruvate. When ventricular pressure development was prevented by ventricular draining or when drained hearts were arrested with tetrodotoxin, protein synthesis still increased as perfusion pressure was raised from 60 to 120 mm Hg. Oxygen consumption increased as aortic pressure was increased in drained, beating hearts, but was unaffected in arrested, drained hearts. These studies indicated that increased aortic pressure and its attendant stretch of the ventricular wall were the mechanical parameter most closely associated with faster rates of protein synthesis.  相似文献   

20.
Abstract— Rats were placed in a tank of deep water to swim until they learned to escape (Group E) or were lifted out (Group F). Controls (Group C) were left in their home cages. Specific radioactivities of purified gangliosides, other glycolipids and nonlipid carbohydrates were measured at 9 and 24 h after intracranial injection of D-[1-14C]glucosamine and the subsequent swimming trials. Nonspecific effects of behavioural stimulation (similar changes in Groups E and F) included decreased net incorporation of radioactivity into monosialogangliosides and nonganglioside carbohydrates, a relative increase in content of GT1 gangliosides and decreased content of GT1 gangliosides. Specific effects (different changes in Groupe E and F) included in Group E decreased net uptake of radioactivity into disialogangliosides. These results demonstrate that in rat brain: (1) ganglioside metabolism is affected by behavioural stimulation; (2) metabolism of other heteropolysaccharides is also affected; and (3) some biochemical changes are consequences of nonspecific stimulation whereas others are associated with specific elements of experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号