首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characterization of the enzymes responsible for amyloid beta-peptide (Abeta) production is considered to be a primary goal towards the development of future therapeutics for the treatment of Alzheimer's disease. Inhibitors of gamma-secretase activity were critical in demonstrating that the presenilins (PSs) likely comprised at least part of the active site of the gamma-secretase enzyme complex, with two highly conserved membrane aspartates presumably acting as catalytic residues. However, whether or not these aspartates are actually the catalytic residues of the enzyme complex or are merely essential for normal PS function and/or maturation is still unknown. In this paper, we report the development of reactive inhibitors of gamma-secretase activity that are functionally irreversible. Since such inhibitors have been shown to bind catalytic residues in other aspartyl proteases (e.g., HIV protease), they might be used to determine if the transmembrane aspartates of PSs are involved directly in substrate cleavage.  相似文献   

2.
Mutations in the presenilin genes PS1 and PS2 cause early-onset Alzheimer's disease by altering gamma-secretase cleavage of the amyloid precursor protein, the last step in the generation of Abeta peptide. Ablation of presenilin (PS) genes, or mutation of two critical aspartates, abolishes gamma-secretase cleavage, suggesting that PS may be the gamma-secretases. Independently, inhibition experiments indicate that gamma-secretase is an aspartyl protease. To characterize the putative gamma-secretase activity associated with presenilins, lysates from human neuroblastoma SH-SY5Y and human brain homogenates were incubated with biotin derivatives of pepstatin, followed by immunoprecipitation of PS and associated proteins, and biotin detection by Western blotting. Precipitation with PS1 antibodies, directed to either N-terminal or loop regions, yielded the same 43 kDa band, of apparent molecular mass consistent with that of full-length PS1, although it may represent an aspartyl protease complexed with PS1. Incubation of cell lysates with pepstatin-biotin, followed by streptavidin precipitation and PS1 Western blotting, revealed PS1 fragments and full-length protein, indicating that pepstatin-biotin bound to both cleaved and uncleaved PS1. Binding could be competed by gamma-secretase inhibitor L-685,458 and could not be achieved with a PS1 mutant lacking the two transmembrane aspartates. Pepstatin-biotin was also shown to bind to PS2. PS1 was specifically absorbed to pepstatin-agarose, with an optimal pH of 6. Binding of pepstatin-biotin to PS1 from lymphocytes of a heterozygous carrier of pathologic exon 9 deletion was markedly decreased as compared to control lymphocytes, suggesting that this PS1 mutation altered the pepstatin binding site.  相似文献   

3.
A major component of the amyloid plaque core in Alzheimer's disease (AD) is the 40-42-residue amyloid beta peptide (Abeta). Mutations linked to AD such as those in presenilins 1 (PS1) and 2 (PS2) invariably increase the longer Abeta42 species that forms neurotoxic oligomers. It is believed that PS1/2 constitute the catalytic subunit of the gamma-secretase responsible for the final step in Abeta biogenesis. Recent genetic studies have identified a number of additional genes encoding APH1a, APH1b, PEN2, and Nicastrin proteins, which are part of the gamma-secretase complex with PS1. Further, knockout studies using RNAi showed that these components are essential for gamma-secretase activity. However, the nature of gamma-secretase and how the aforementioned proteins regulate its activity are still incompletely understood. Here we present evidence that unlike PS1, overexpression of these proteins can increase the levels of Abeta, suggesting that these proteins are limiting for gamma-secretase activity. In addition, our studies also suggest that the presenilin partners regulate the relative levels of Abeta40 and Abeta42.  相似文献   

4.
5.
Amyloid beta-peptide (Abeta) is generated by the consecutive cleavages of beta- and gamma-secretase. The intramembraneous gamma-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with gamma-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Abeta production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the gamma-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with gamma-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by gamma-secretase inhibitors results in delayed reinternalization of the beta-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in gamma-secretase processing and in trafficking.  相似文献   

6.
The amyloid-beta protein (Abeta) is strongly implicated in the pathogenesis of Alzheimer's disease. The final step in the production of Abeta from the amyloid precursor protein (APP) is proteolysis by the unidentified gamma-secretases. This cleavage event is unusual in that it apparently occurs within the transmembrane region of the substrate. Studies with substrate-based inhibitors together with molecular modeling and mutagenesis of the gamma-secretase cleavage site of APP suggest that gamma-secretases are aspartyl proteases that catalyze a novel intramembranous proteolysis. This proteolysis requires the presenilins, proteins with eight transmembrane domains that are mutated in most cases of autosomal dominant familial Alzheimer's disease. Two conserved transmembrane aspartates in presenilins are essential for gamma-secretase activity, suggesting that presenilins themselves are gamma-secretases. Moreover, presenilins also mediate the apparently intramembranous cleavage of the Notch receptor, an event critical for Notch signaling and embryonic development. Thus, if presenilins are gamma-secretases, then they are also likely the proteases that cleave Notch within its transmembrane domain. Another protease, S2P, involved in the processing of the sterol regulatory element binding protein, is also a multipass integral membrane protein which cleaves within or very close to the transmembrane region of its substrate. Thus, presenilins and S2P appear to be members of a new type of polytopic protease with an intramembranous active site.  相似文献   

7.
Presenilin function and gamma-secretase activity   总被引:1,自引:0,他引:1  
Alzheimer's disease (AD) is the most common form of dementia and is characterized pathologically by the accumulation of beta-amyloid (Abeta) plaques and neurofibrillary tangles in the brain. Genetic studies of AD first highlighted the importance of the presenilins (PS). Subsequent functional studies have demonstrated that PS form the catalytic subunit of the gamma-secretase complex that produces the Abeta peptide, confirming the central role of PS in AD biology. Here, we review the studies that have characterized PS function in the gamma-secretase complex in Caenorhabditis elegans, mice and in in vitro cell culture systems, including studies of PS structure, PS interactions with substrates and other gamma-secretase complex members, and the evidence supporting the hypothesis that PS are aspartyl proteases that are active in intramembranous proteolysis. A thorough knowledge of the mechanism of PS cleavage in the context of the gamma-secretase complex will further our understanding of the molecular mechanisms that cause AD, and may allow the development of therapeutics that can alter Abeta production and modify the risk for AD.  相似文献   

8.
gamma-Secretase is an enzymatic activity responsible for the final cleavage of the amyloid precursor protein leading to the production of the amyloid beta-peptide (Abeta). gamma-Secretase is likely an aspartyl protease, since its activity can be inhibited by both pepstatin and active-site directed aspartyl protease inhibitors. Recent work has indicated that presenilins 1 and 2 may actually be the gamma-secretase enzymes. Presenilin (PS) mutations, which lead to an increase in the production of a longer form of Abeta, are also the most common cause of familial Alzheimer's disease (FAD). Therefore, in an attempt to better characterize the substrate preferences of gamma-secretase, we performed experiments to determine how FAD-linked mutations in PS1 would affect the generation of Abeta peptides from full length precursor substrates that we have previously demonstrated to be proteolytically cleaved at alternative sites and/or by enzymatic activities that are pharmacologically distinct. Presenilin mutations increased the production of Abeta peptides from sites distal to the primary cleavage site ('longer' peptides) and in several cases also decreased production of 'shorter' peptides. These results support a model in which the FAD-linked mutants subtly alter the conformation of the gamma-secretase complex to favor the production of long Abeta.  相似文献   

9.
Production of amyloid beta peptides (Abeta), followed by their deposition in the brain as amyloid plaques, contributes to the hallmark pathology of Alzheimer disease. The enzymes responsible for production of Abeta, BACE1 and gamma-secretase, are therapeutic targets for treatment of Alzheimer disease. Two presenilin (PS) homologues, referred to as PS1 and PS2, comprise the catalytic core of gamma-secretase. In comparing presenilin selectivity of several classes of gamma-secretase inhibitors, we observed that sulfonamides in general tend to be more selective for inhibition of PS1-comprising gamma-secretase, as exemplified by ELN318463 and BMS299897. We employed a combination of chimeric constructs and point mutants to identify structural determinants for PS1-selective inhibition by ELN318463. Our studies identified amino acid residues Leu(172), Thr(281), and Leu(282) in PS1 as necessary for PS1-selective inhibition by ELN318463. These residues also contributed in part to the PS1-selective inhibition by BMS299897. Alanine scanning mutagenesis of areas flanking Leu(172), Thr(281), and Leu(282) identified additional amino acids that affect inhibitor potency of not only these sulfonamides but also nonsulfonamide inhibitors, without affecting Abeta production and presenilin endoproteolysis. Interestingly, many of these same residues have been identified previously to be important for gamma-secretase function. These findings implicate TM3 and a second region near the carboxyl terminus of PS1 aminoterminal fragment in mediating the activity of gamma-secretase inhibitors. Our observations demonstrate that PS-selective inhibitors of gamma-secretase are feasible, and such inhibitors may allow differential inhibition of Abeta peptide production and Notch signaling.  相似文献   

10.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

11.
We have designed new non-peptidic potential inhibitors of gamma-secretase and examined their ability to prevent production of amyloid-beta 40 (Abeta40) and Abeta42 by human cells expressing wild-type and Swedish-mutant beta-amyloid precursor protein (betaAPP). Here we identify three such agents that markedly reduce recovery of both Abeta40 and Abeta42 produced by both cell lines, and increase that of C99 and C83, the carboxy-terminal fragments of betaAPP that are derived from beta-and alpha-secretase, respectively. Furthermore, we show that these inhibitors do not affect endoproteolysis of endogenous or overexpressed presenilins. These inhibitors are totally unable to affect the mDeltaEnotch-1 cleavage that leads to generation of the Notch intracellular domain (NICD). These represent the first non-peptidic inhibitors that are able to prevent gamma-secretase cleavage of betaAPP without affecting processing of mDeltaEnotch-1 or endoproteolysis of presenilins. The distinction between these two proteolytic events, which are both prevented by disruption of presenilin genes, indicates that although they are intimately linked with betaAPP and Notch maturation, presenilins are probably involved in the control of maturation processes upstream of enzymes that cleave gamma-secretase and Notch.  相似文献   

12.
gamma-Secretase is an atypical aspartyl protease that cleaves amyloid beta-precursor protein to generate Abeta peptides that are causative for Alzheimer disease. gamma-Secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1, and Pen-2. Pen-2 directly binds to transmembrane domain 4 of PS and confers proteolytic activity on gamma-secretase, although the mechanism of activation and its role in catalysis remain unknown. Here we show that an addition of amino acid residues to the N terminus of Pen-2 specifically increases the generation of Abeta42, the longer and more aggregable species of Abeta. The effect of the N-terminal elongation of Pen-2 on Abeta42 generation was independent of the amino acid sequences, the expression system and the presenilin species. In vitro gamma-secretase assay revealed that Pen-2 directly affects the Abeta42-generating activity of gamma-secretase. The elongation of Pen-2 N terminus caused a reduction in the water accessibility of the luminal side of the catalytic pore of PS1 in a similar manner to that caused by an Abeta42-raising gamma-secretase modulator, fenofibrate, as determined by substituted cysteine accessibility method. These data suggest a unique mechanism of Abeta42 overproduction associated with structural changes in the catalytic pore of presenilins caused commonly by the N-terminal elongation of Pen-2 and fenofibrate.  相似文献   

13.
Gamma-secretase performs the final processing step in the generation of amyloid-beta (Abeta) peptides, which are believed to be causative for Alzheimer's disease. Presenilins (PS) are required for gamma-secretase activity and the presence of two essential intramembranous aspartates (D257 and D385) has implicated this region as the putative catalytic centre of an aspartyl protease. The presence of several key hydrogen-bonding residues around the active site of classical aspartyl proteases led us to investigate the role of both the critical aspartates and two nearby conserved hydrogen bond donors in PS1. Generation of cell lines stably overexpressing the D257E, D385E, Y256F and Y389F engineered mutations has enabled us to determine their role in enzyme catalysis and binding of a transition state analogue gamma-secretase inhibitor. Here we report that replacement of either tyrosine residue alters gamma-secretase cleavage specificity, resulting in an increase in the production of the more pathogenic Abeta42 peptide in both cells and membranous enzyme preparations, without affecting inhibitor binding. In contrast, replacement of either of the aspartate residues precludes inhibitor binding in addition to inactivation of the enzyme. Together, these data further incriminate the region around the intramembranous aspartates as the active site of the enzyme, targeted by transition state analogue inhibitors, and highlight the roles of individual residues.  相似文献   

14.
Qyang Y  Chambers SM  Wang P  Xia X  Chen X  Goodell MA  Zheng H 《Biochemistry》2004,43(18):5352-5359
Mammalian presenilins (PS) consist of two highly homologous proteins, PS1 and PS2. Because of their indispensable activity in the gamma-secretase cleavage of amyloid precursor protein to generate Abeta peptides, inhibition of PS gamma-secretase activity is considered a potential therapy for Abeta blockage and Alzheimer's disease intervention. However, a variety of other substrates are also subject to PS-dependent processing, and it is thus imperative to understand the consequences of PS inactivation in vivo. Here we report a pivotal role of PS in hematopoiesis. Mice heterozygous for PS1 and homozygous for PS2 (PS1(+/)(-)PS2(-)(/)(-)) developed splenomegaly with severe granulocyte infiltration. This was preceded by an overrepresentation of granulocytic cells in the bone marrow and a greatly increased multipotent granulocyte-monocyte progenitor in the spleen. In contrast, hematopoietic stem cells and T- and B-lymphocytes were not affected. Importantly, treatment of wild-type splenocytes with a gamma-secretase inhibitor directly promoted the granulocyte-macrophage colony-forming unit (GM-CFU). These results establish a critical role of PS in myelopoiesis. Our finding that this activity can be directly modulated by its gamma-secretase activity has important safety implications concerning these inhibitors.  相似文献   

15.
Proteolytic processing of amyloid precursor protein generates beta-amyloid (Abeta) peptides that are deposited in senile plaques in brains of aged individuals and patients with Alzheimer's disease. Presenilins (PS1 and PS2) facilitate the final step in Abeta production, the intramembranous gamma-secretase cleavage of amyloid precursor protein. Biochemical and pharmacological evidence support a catalytic or accessory role for PS1 in gamma-secretase cleavage, as well as a regulatory role in select membrane protein trafficking. In this report, we demonstrate that PS1 is required for maturation and cell surface accumulation of nicastrin, an integral component of the multimeric gamma-secretase complex. Using kinetic labeling studies we show that in PS1(-/-)/PS2(-/-) cells nicastrin fails to reach the medial Golgi compartment, and as a consequence, is incompletely glycosylated. Stable expression of human PS1 restores these deficiencies in PS1(-/-) fibroblasts. Moreover, membrane fractionation studies show co-localization of PS1 fragments with mature nicastrin. These results indicate a novel chaperone-type role for PS1 and PS2 in facilitating nicastrin maturation and transport in the early biosynthetic compartments. Our findings are consistent with PS1 influencing gamma-secretase processing at multiple steps, including maturation and intracellular trafficking of substrates and component(s) of the gamma-secretase complex.  相似文献   

16.
Urea-based beta-amyloid (Abeta) SDS-polyacrylamide gel electrophoresis and immunoblots were used to analyze the generation of Abeta peptides in conditioned medium from primary mouse neurons and a neuroglioma cell line, as well as in human cerebrospinal fluid. A comparable and highly conserved pattern of Abeta peptides, namely, 1-40/42 and carboxyl-terminal-truncated 1-37, 1-38, and 1-39, was found. Besides Abeta1-42, we also observed a consistent elevation of amino-terminal-truncated Abeta2-42 in a detergent-soluble pool in brains of subjects with Alzheimer's disease. Abeta2-42 was also specifically elevated in cerebrospinal fluid samples of Alzheimer's disease patients. To decipher the contribution of potential different gamma-secretases (presenilins (PSs)) in generating the amino-terminal- and carboxyl-terminal-truncated Abeta peptides, we overexpressed beta-amyloid precursor protein (APP)-trafficking mutants in PS1+/+ and PS1-/- neurons. As compared with APP-WT (primary neurons from control or PS1-deficient mice infected with Semliki Forest virus), PS1-/- neurons and PS1+/+ neurons overexpressing APP-Deltact (a slow-internalizing mutant) show a decrease of all secreted Abeta peptide species, as expected, because this mutant is processed mainly by alpha-secretase. This drop is even more pronounced for the APP-KK construct (APP mutant carrying an endoplasmic reticulum retention motif). Surprisingly, Abeta2-42 is significantly less affected in PS1-/- neurons and in neurons transfected with the endocytosis-deficient APP-Deltact construct. Our data confirm that PS1 is closely involved in the production of Abeta1-40/42 and the carboxyl-terminal-truncated Abeta1-37, Abeta1-38, and Abeta1-39, but the amino-terminal-truncated and carboxyl-terminal-elongated Abeta2-42 seems to be less affected by PS1 deficiency. Moreover, our results indicate that the latter Abeta peptide species could be generated by a beta(Asp/Ala)-secretase activity.  相似文献   

17.
Studies demonstrating that accumulation and aggregation of the amyloid beta protein (Abeta) within the brain is likely to cause Alzheimer's disease (AD) have provided the rationale for therapeutic strategies aimed at influencing Abeta production, aggregation and clearance. gamma-secretase catalyzes the final cleavage that releases the Abeta from its precursor; therefore, it is a potential therapeutic target for the treatment of AD. Recent data show that the polytopic membrane proteins presenilin 1 and presenilin 2 are either catalytic components or essential co-factors of a membrane-bound proteolytic complex that possesses gamma-secretase activity. Although recent findings demonstrating that gamma-secretase inhibitors bind directly to presenilins (PSs) further support a catalytic role for PSs in gamma-secretase cleavage, additional studies are still needed to clarify the role of PSs in gamma-secretase cleavage and the use of targeting PSs to reduce Abeta production.  相似文献   

18.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

19.
The presenilin (PS) complex, including PS, nicastrin, APH-1 and PEN-2, is essential for gamma-secretase activity, which is required for amyloid beta-protein (Abeta) generation. However, the precise individual roles of the three cofactors in the PS complex in Abeta generation remain to be clarified. Here, to distinguish the roles of PS cofactors in gamma-secretase activity from those in PS endoproteolysis, we investigated their roles in the gamma-secretase activity reconstituted by the coexpression of PS N- and C-terminal fragments (NTF and CTF) in PS-null cells. We demonstrate that the coexpression of PS1 NTF and CTF forms the heterodimer and restores Abeta generation in PS-null cells. The generation of Abeta was saturable at a certain expression level of PS1 NTF/CTF, while the overexpression of PEN-2 alone resulted in a further increase in Abeta generation. Although PEN-2 did not enhance PS1 NTF/CTF heterodimer formation, PEN-2 expression reduced the IC50 of a specific gamma-secretase inhibitor, a transition state analogue, for Abeta generation, suggesting that PEN-2 expression enhances the affinity or the accessibility of the substrate to the catalytic site. Thus, our results strongly suggest that PEN-2 is not only an essential component of the gamma-secretase complex but also an enhancer of gamma-cleavage after PS heterodimer formation.  相似文献   

20.
beta-Amyloid peptides (Abeta40 and Abeta42) are the major constituents of amyloid plaques, which are one of the hallmarks of Alzheimer's disease (AD). The Abeta is derived from sequential cleavages of amyloid precursor protein (APP) by beta- and gamma-secretases. gamma-Secretase consists of at least four proteins where presenilins (PS1 and PS2 or PS) are the catalytic subunit involved in the gamma-site cleavage of APP. Secretion of both Abeta40 and Abeta42 is significantly reduced in PS1 knock-out cells and completely abolished in cells deficient for both PS1 and PS2. Consequently, both the PS proteins play essential roles in the production of the secretory of Abeta from cells. Recent studies in primary neurons, however, suggest that PSs are not required for intracellular Abeta42 accumulation; thus the intracellular Abeta42 appears to be generated in a PS-independent manner. Here we present the first biochemical evidence indicating that Abeta, especially Abeta42, can be generated in the absence of PS based on an in vitrogamma-secretase assay employing membranes prepared from PS-deficient Blastocyst-derived (BD) cells. This PS-independent gamma-secretase (PSIG) activity is sensitive to the changes in pH and displays an optimal activity at pH 6.0. Pepstatin A is a potent inhibitor for this proteolytic activity with IC50 of 1.2 nm and 0.4 nm for Abeta40 and Abeta42 generation, respectively. These results indicate that these PS-independent gamma-site cleavages are mediated by an aspartyl protease. More importantly, the PSIG activity displays a distinct preference in mediating the 42-site cleavage over the 40-site cleavage, thereby generating Abeta42 as the predominant product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号