首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of voltage-clamped sodium currents were studied in frog skeletal muscle. Sodium currents in frog skeletal muscle activate and inactivate following an initial delay in response to a depolarizing voltage pulse. Inactivation occurs via a double exponential decay exhibiting fast and slow components for virtually all depolarizing pulses used.The deactivation of Na currents exhibits two exponential components, one decaying rapidly, while the other decays slowly in time; the relative amplitude of the two components changes with the duration of the activating pulse. The two deactivation phases remain after pharmacological elimination of inactivation.In individual fibers, the percent amplitude of the slow inactivation component correlates with the percent amplitude of the slow deactivation component.Tetrodotoxin differentially blocks the slow deactivation component.These observations are interpreted as the activation, inactivation and deactivation of two subtypes (fast and slow) of Na channels.Studies of the slow deactivation phase magnitude vs the duration of the eliciting pulse provide a way to determine the kinetics of the slow Na channel in muscle.Ammonium substitution for Na in the Ringer produces a voltage dependent activation and inactivation of current which exhibits only one decay phase, and eliminates the slow decay phase of current, suggesting that adjustments of the ionic environment of the channels can mask the presence of one of the channel subtypes.  相似文献   

2.
Removal of inactivation causes time-invariant sodium current decays   总被引:3,自引:1,他引:2       下载免费PDF全文
The kinetic properties of the closing of Na channels were studied in frog skeletal muscle to obtain information about the dependence of channel closing on the past history of the channel. Channel closing was studied in normal and modified channels. Chloramine-T was used to modify the channels so that inactivation was virtually removed. A series of depolarizing prepulse potentials was used to activate Na channels, and a -140-mV postpulse was used to monitor the closing of the channels. Unmodified channels decay via a biexponential process with time constants of 72 and 534 microseconds at 12 degrees C. The observed time constants do not depend upon the potential used to activate the channels. The contribution of the slow component to the total decay increases as the activating prepulse is lengthened. After inactivation is removed, the biexponential character of the decay is retained, with no change in the magnitude of the time constants. However, increases in the duration of the activating prepulse over the range where the current is maximal 1-75 ms) produce identical biexponential decays. The presence of biexponential decays suggests that either two subtypes of Na channels are found in muscle, or Na channels can exist in one of two equally conductive states. The time-invariant decays observed suggest that channel closure does not depend upon their past history.  相似文献   

3.
Simulation of Na channel inactivation by thiazine dyes   总被引:7,自引:2,他引:5       下载免费PDF全文
Some dyes of the methylene blue family serve as artificial inactivators of the sodium channels when present inside squid axons at a concentration of approximately 0.1 mM. The dyes restore a semblance of inactivation after normal inactivation has been destroyed by pronase. In fibers that inactivate normally, the dyes hasten the decay of sodium current. Many dye-blocked channels conduct transiently on exit of the dye molecule after repolarization to the holding potential. In contrast, normally inactivated channels do not conduct during recovery from inactivation. Kinetic evidence shows that inactivation of a dye-blocked channel is unlikely or impossible, which suggests that dye molecules compete with inactivation "particles" for the same site. In the absence of tetrodotoxin, the dyes do not affect the ON gating current unless the interpulse interval is very short. If sufficient equilibration time is allowed during a pulse, the initial amplitude of the OFF gating current is reduced to near zero. This suggests that a dye molecule is a Na channel completely blocks that channel's gating current, even the fraction that is resistant to normal inactivation. Dyes block INa and Ig with the same time course. This provides the strongest evidence to date that virtually all of recorded "gating current" is associated with Na channels. Tetrodotoxin greatly slows dissociation of dye molecules from Na channels and reduced gating current during both opening and closing of the channels.  相似文献   

4.
Inactivation of slow Ca2+ channels was studied in intact twitch skeletal muscle fibers of the frog by using the three-microelectrode voltage-clamp technique. Hypertonic sucrose solutions were used to abolish contraction. The rate constant of decay of the slow Ca2+ current (ICa) remained practically unchanged when the recording solution containing 10 mM Ca2+ was replaced by a Ca2+-buffered solution (126 mM Ca-maleate). The rate constant of decay of ICa monotonically increased with depolarization although the corresponding time integral of ICa followed a bell-shaped function. The replacement of Ca2+ by Ba2+ did not result in a slowing of the rate of decay of the inward current nor did it reduce the degree of steady-state inactivation. The voltage dependence of the steady-state inactivation curve was steeper in the presence of Ba2+. In two-pulse experiments with large conditioning depolarizations ICa inactivation remained unchanged although Ca2+ influx during the prepulse greatly decreased. Dantrolene (12 microM) increased mechanical threshold at all pulse durations tested, the effect being more prominent for short pulses. Dantrolene did not significantly modify ICa decay and the voltage dependence of inactivation. These results indicate that in intact muscle fibers Ca2+ channels inactivate in a voltage-dependent manner through a mechanism that does not require Ca2+ entry into the cell.  相似文献   

5.
Kinetics of veratridine action on Na channels of skeletal muscle   总被引:15,自引:8,他引:7       下载免费PDF全文
Veratridine bath-applied to frog muscle makes inactivation of INa incomplete during a depolarizing voltage-clamp pulse and leads to a persistent veratridine-induced Na tail current. During repetitive depolarizations, the size of successive tail currents grows to a plateau and then gradually decreases. When pulsing is stopped, the tail current declines to zero with a time constant of approximately 3 s. Higher rates of stimulation result in a faster build-up of the tail current and a larger maximum value. I propose that veratridine binds only to open channels and, when bound, prevents normal fast inactivation and rapid shutting of the channel on return to rest. Veratridine-modified channels are also subject to a "slow" inactivation during long depolarizations or extended pulse trains. At rest, veratridine unbinds with a time constant of approximately 3 s. Three tests confirm these hypotheses: (a) the time course of the development of veratridine-induced tail currents parallels a running time integral of gNa during the pulse; (b) inactivating prepulses reduce the ability to evoke tails, and the voltage dependence of this reduction parallels the voltage dependence of h infinity; (c) chloramine-T, N-bromoacetamide, and scorpion toxin, agents that decrease inactivation in Na channels, each greatly enhance the tail currents and alter the time course of the appearance of the tails as predicted by the hypothesis. Veratridine-modified channels shut during hyperpolarizations from -90 mV and reopen on repolarization to -90 mV, a process that resembles normal activation gating. Veratridine appears to bind more rapidly during larger depolarizations.  相似文献   

6.
The kinetics of the slow current carried by sodium ions through potential-dependent calcium channels after addition of EDTA to calcium-free external solution was investigated in experiments by the intracellular dialysis method on isolatedHelix pomatia neurons. The activation kinetics of this current was similar to that of the calcium current and could be described by the use of the square of the activation variable m in Hodgkin-Huxley equations. The decay (inactivation) kinetics of the induced sodium current during prolonged depolarization is biexponential in character. It is suggested that decay of the sodium currents takes place as a result of two independent processes: potential-dependent inactivation with a time constant τh~1 sec, taking place as far as a certain steady-state level h, and a decrease in current connected with Na+ accumulation inside the cell during passage of the current and a consequent change in the sodium electrochemical potential (τc~10 sec). It is concluded that modification of the calcium channels, so that they acquire the ability to conduct sodium, has no significant effect on the gating mechanisms responsible for opening and closing of the channels.  相似文献   

7.
Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa(V)1.4 channels occurs with a higher probability than hNa(V)1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa(V)1.5 and hNa(V)1.4 channels into chimerical constructs expressed in Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa(V)1.4 with isoleucine from the corresponding position (891) in hNa(V)1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa(V)1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa(V)1.4 and I891in hNa(V)1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa(V)1.4 and hNa(V)1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [tau(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.  相似文献   

8.
Na and Ca channels in a transformed line of anterior pituitary cells   总被引:20,自引:14,他引:6       下载免费PDF全文
The ionic conductances of GH3 cells, a transformed line from rat anterior pituitary, have been studied using the whole-cell variant of the patch-clamp technique (Hamill et al., 1981). Pipettes of very low resistance were used, which improved time resolution and made it possible to control the ion content of the cell interior, which equilibrated very rapidly with the pipette contents. Time resolution was further improved by using series resistance compensation and "ballistic charging" of the cell capacitance. We have identified and partially characterized at least three conductances, one carrying only outward current, and the other two normally inward. The outward current is absent when the pipette is filled with Cs+ instead of K+, and has the characteristics of a voltage-dependent potassium conductance. One of the two inward conductances (studied with Cs+ inside) has fast activation, inactivation and deactivation kinetics, is blocked by tetrodotoxin (TTX), and has a reversal potential at the sodium equilibrium potential. The other inward current activates more slowly and deactivates with a quick phase and a very slow phase after a short pulse. Either Ca++ or Ba++ serves as current carrier. During a prolonged pulse, current inactivates fairly completely if there is at least 5 mM Ca++ outside, and the amplitude of the current tails following the pulse diminishes with the time course of inactivation. When Ba++ entirely replaces Ca++ in the external medium, there is no inactivation, but deactivation kinetics of Ca channels vary as pulse duration increases: the slow phase disappears, the fast phase grows in amplitude. Inactivation (Ca++ outside) is unaltered by 50 mM EGTA in the pipette: inactivation cannot be the result of internal accumulation of Ca++.  相似文献   

9.
Y Y Vilin  N Makita  A L George  Jr    P C Ruben 《Biophysical journal》1999,77(3):1384-1393
Skeletal and heart muscle excitability is based upon the pool of available sodium channels as determined by both fast and slow inactivation. Slow inactivation in hH1 sodium channels significantly differs from slow inactivation in hSkM1. The beta(1)-subunit modulates fast inactivation in human skeletal sodium channels (hSkM1) but has little effect on fast inactivation in human cardiac sodium channels (hH1). The role of the beta(1)-subunit in sodium channel slow inactivation is still unknown. We used the macropatch technique on Xenopus oocytes to study hSkM1 and hH1 slow inactivation with and without beta(1)-subunit coexpression. Our results indicate that the beta(1)-subunit is partly responsible for differences in steady-state slow inactivation between hSkM1 and hH1 channels. We also studied a sodium channel chimera, in which P-loops from each domain in hSkM1 sodium channels were replaced with corresponding regions from hH1. Our results show that these chimeras exhibit hH1-like properties of steady-state slow inactivation. These data suggest that P-loops are structural determinants of sodium channel slow inactivation, and that the beta(1)-subunit modulates slow inactivation in hSkM1 but not hH1. Changes in slow inactivation time constants in sodium channels coexpressed with the beta(1)-subunit indicate possible interactions among the beta(1)-subunit, P-loops, and the slow inactivation gate in sodium channels.  相似文献   

10.
Slow components of potassium tail currents in rat skeletal muscle   总被引:2,自引:2,他引:0       下载免费PDF全文
The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.  相似文献   

11.
AMPA-type glutamate receptors are tetrameric ion channels that mediate fast excitatory synaptic transmission in the mammalian brain. When agonists occupy the binding domain of individual receptor subunits, this domain closes, triggering rearrangements that couple agonist binding to channel opening. Here we compare the kinetic behavior of GluR2 channels activated by four different ligands, glutamate, AMPA, quisqualate, and 2-Me-Tet-AMPA, full agonists that vary in potency by up to two orders of magnitude. After reduction of desensitization with cyclothiazide, deactivation decays were strongly agonist dependent. The time constants of decay increased with potency, and slow components in the multiexponential decays became more prominent. The desensitization decays of agonist-activated currents also contained multiple exponential components, but they were similar for the four agonists. The time course of recovery from desensitization produced by each agonist was described by two sigmoid components, and the speed of recovery varied substantially. Recovery was fastest for glutamate and slowest for 2-Me-Tet-AMPA, and the amplitude of the slow component of recovery increased with agonist potency. The multiple kinetic components appear to arise from closed-state transitions that precede channel gating. Stargazin increases the slow kinetic components, and they likely contribute to the biexponential decay of excitatory postsynaptic currents.  相似文献   

12.
Modulation of nerve membrane sodium channels by chemicals   总被引:1,自引:0,他引:1  
1. Modulations of sodium channel kinetics by grayanotoxins and pyrethroids have been studied using voltage clamped, internally perfused giant axons from crayfish and squid. 2. Grayanotoxin I and alpha-dihydrograyanotoxin II greatly depolarize the nerve membrane through an increase in resting sodium channel permeability to sodium ions. 3. Grayanotoxins modify a fraction of sodium channel population to give rise to a slow conductance increase with little or no inactivation, and the slow conductance-membrane potential curve is shifted toward hyperpolarization. This accounts for the depolarization. 4. The tail current associated with step repolarization during the slow current in grayanotoxins decays with a dual exponential time course. 5. (+)-trans tetramethrin and (+)-trans allethrin also modify a fraction of sodium channel population in generating a slow current, which attains a maximum slowly and decays very slowly during a maintained depolarizing step. The membrane is depolarized only slightly. 6. The tail current associated with step repolarization during the slow current in the pyrethroids is very large in initial amplitude and decays very slowly. 7. The rate at which the sodium channel arrives at the modified open state in the presence of pyrethroids is expressed by a dual exponential function, and the slow phase disappears following removal of the sodium inactivation mechanism by internal perfusion of pronase. 8. A kinetic model is proposed to account for the actions of both grayanotoxins and pyrethroids on sodium channels. Both chemicals interact with the channel at both open and closed states to yield a modified open state which results in a slow sodium current.  相似文献   

13.
The kinetic properties of hKv1.5, a Shaker-related cardiac delayed rectifier, expressed in Ltk- cells were studied. hKv1.5 currents elicited by membrane depolarizations exhibited a delay followed by biphasic activation. The biphasic activation remained after 5-s prepulses to membrane potentials between -80 and -30 mV; however, the relative amplitude of the slow component increased as the prepulse potential approached the threshold of channel activation, suggesting that the second component did not reflect activation from a hesitant state. The decay of tail currents at potentials between -80 and -30 mV was adequately described with a biexponential. The time course of deactivation slowed as the duration of the depolarizing pulse increased. This was due to a relative increase in the slowly decaying component, despite similar initial amplitudes reflecting a similar open probability after 50- and 500-ms prepulses. To further investigate transitions after the initial activated state, we examined the temperature dependence of inactivation. The time constants of slow inactivation displayed little temperature and voltage dependence, but the degree of the inactivation increased substantially with increased temperature. Recovery from inactivation proceeded with a biexponential time course, but long prepulses at depolarized potentials slowed the apparent rate of recovery from inactivation. These data strongly indicate that hKv1.5 has both multiple open states and multiple inactivated states.  相似文献   

14.
Voltage-gated Na+ and K+ channels play key roles in the excitability of skeletal muscle fibers. In this study we investigated the steady-state and kinetic properties of voltage-gated Na+ and K+ currents of slow and fast skeletal muscle fibers in zebrafish ranging in age from 1 day postfertilization (dpf) to 4-6 dpf. The inner white (fast) fibers possess an A-type inactivating K+ current that increases in peak current density and accelerates its rise and decay times during development. As the muscle matured, the V50s of activation and inactivation of the A-type current became more depolarized, and then hyperpolarized again in older animals. The activation kinetics of the delayed outward K+ current in red (slow) fibers accelerated within the first week of development. The tail currents of the outward K+ currents were too small to allow an accurate determination of the V50s of activation. Red fibers did not show any evidence of inward Na+ currents; however, white fibers expressed Na+ currents that increased their peak current density, accelerated their inactivation kinetics, and hyperpolarized their V50 of inactivation during development. The action potentials of white fibers exhibited significant changes in the threshold voltage and the half width. These findings indicate that there are significant differences in the ionic current profiles between the red and white fibers and that a number of changes occur in the steady-state and kinetic properties of Na+ and K+ currents of developing zebrafish skeletal muscle fibers, with the most dramatic changes occurring around the end of the first day following egg fertilization.  相似文献   

15.
Linear Systems convolution analysis of muscle sodium currents was used to predict the opening rate of sodium channels as a function of time during voltage clamp pulses. If open sodium channel lifetimes are exponentially distributed, the channel opening rate corresponding to a sodium current obtained at any particular voltage, can be analytically obtained using a simple equation, given single channel information about the mean open-channel lifetime and current.Predictions of channel opening rate during voltage clamp pulses show that sodium channel inactivation arises coincident with a decline in channel opening rate.Sodium currents pharmacologically modified with Chloramine-T treatment so that they do not inactivate, show a predicted sustained channel opening rate.Large depolarizing voltage clamp pulses produce channel opening rate functions that resemble gating currents.The predicted channel opening rate functions are best described by kinetic models for Na channels which confer most of the charge movement to transitions between closed states.Comparisons of channel opening rate functions with gating currents suggests that there may be subtypes of Na channel with some contributing more charge movement per channel opening than others.Na channels open on average, only once during the transient period of Na activation and inactivation.After transiently opening during the activation period and then closing by entering the inactivated state, Na channels reopen if the voltage pulse is long enough and contribute to steady-state currents.The convolution model overestimates the opening rate of channels contributing to the steady-state currents that remain after the transient early Na current has subsided.  相似文献   

16.
The mechanism(s) of the decay of slow calcium current (ICa) in cut twitch skeletal muscle fibers of the frog were studied in voltage-clamp experiments using the double vaseline-gap technique. ICa decay followed a single exponential in 10 mM external Ca2+ and 20 mM internal EGTA solutions in all pulse protocols tested: single depolarizing pulses (activation protocol), two pulses (inactivation protocol), and during a long pulse preceded by a short prepulse (400 ms) to 80 mV (tail protocol). In single pulses the rate constant of ICa decay was approximately 0.75 s-1 at 0 mV and became faster with larger depolarizations. ICa had different amplitudes during the second pulses of the inactivation protocol (0 mV) and of the tail protocol (-20 to 40 mV) and had similar time constants of decay. The time constant of decay did not change significantly at each potential after replacing 10 mM Ca2+ with a Ca2+-buffered solution with malate. With 70 mM intracellular EGTA and 10 mM external Ca2+ solutions, ICa also decayed with a single-exponential curve, but it was about four times faster (approximately 3.5 s-1 at 0 mV pulse). In these solutions the rate constant showed a direct relationship with ICa amplitude at different potentials. With 70 mM EGTA, replacing the external 10 mM Ca2+ solution with the Ca2+-buffered solution caused the decay of ICa to become slower and to have the same relationship with membrane potential and ICa amplitude as in fibers with 20 mM EGTA internal solution. The mechanism of ICa decay depends on the intracellular EGTA concentration: (a) internal EGTA (both 20 and 70 mM) significantly reduces the voltage dependence of the inactivation process and (b) 70 mM EGTA dramatically increases the rate of tubular calcium depletion during the flow of ICa.  相似文献   

17.
We examined theability of local anesthetics to correct altered inactivation propertiesof rat skeletal muscle Na+channels containing the equine hyperkalemic periodic paralysis (eqHPP)mutation when expressed in Xenopusoocytes. Increased time constants of current decay in eqHPP channelscompared with wild-type channels were restored by 1 mM benzocaine butwere not altered by lidocaine or mexiletine. Inactivation curves, which were determined by measuring the dependence of the relative peak current amplitude after depolarization to 10 mV on conditioning prepulse voltages, could be shifted in eqHPP channels back toward thatobserved for wild-type (WT) channels using selected concentrations ofbenzocaine, lidocaine, and mexiletine. Recovery from inactivation at80 mV (50-ms conditioning pulse) in eqHPP channels followed amonoexponential time course and was markedly accelerated compared withwild-type channels (WT = 10.8 ± 0.9 ms; eqHPP = 2.9 ± 0.4 ms). Benzocaine slowed the time course of recovery(eqHPP,ben = 9.6 ± 0.4 msat 1 mM) in a concentration-dependent manner. In contrast, the recoveryfrom inactivation with lidocaine and mexiletine had a fast component(fast,lid = 3.2 ± 0.2 ms;fast,mex = 3.1 ± 0.2 ms),which was identical to the recovery in eqHPP channels without drug, anda slow component (slow,lid = 1,688 ± 180 ms; slow,mex = 2,323 ± 328 ms). The time constant of the slow component of therecovery from inactivation was independent of the drug concentration,whereas the fraction of current recovering slowly depended on drugconcentrations and conditioning pulse durations. Our results show thatlocal anesthetics are generally incapable of fully restoring normal WTbehavior in inactivation-deficient eqHPP channels.

  相似文献   

18.
Summary Delays in the development of activation of Na currents were studied using voltage-clamped frog skeletal muscle fibers. Na currents elicited by a depolarizing voltage step from a hyperpolarized membrane potential were delayed in their activation when compared to Na currents elicited from the resting potential. The magnitude of the delay increased with larger hyperpolarizing potentials and decreased with larger depolarizing test potentials. Delays in activation observed following chloramine-T treatment that partially removes inactivation did not differ from delays observed before treatment. Longer exposures of the muscle fiber to chloramine-T led to a complete loss of inactivation, coincident with an elimination of the hyperpolarization-induced delays in activation. Steady-state slow inactivation was virtually unaffected by prolonged exposures of the fibers to chloramine-T that eliminated fast inactivation. The results show that chloramine-T acts at a number of sites to alter both activation and inactivation. Markov model simulations of the results show that chloramine-T alters fundamental time constants of the system by altering both activation and inactivation rate constants.  相似文献   

19.
Na+ currents were measured during 0.4-s depolarizing pulses using the cell-attached variation of the patch-clamp technique. Patches on Cs-dialyzed segments of sartorius muscle of Rana pipiens contained an estimated 25-500 Na+ channels. Three distinct types of current were observed after the pulse onset: a large initial surge of inward current that decayed within 10 ms (early currents), a steady "drizzle" of isolated, brief, inward unitary currents (background currents), and occasional "cloudbursts" of tens to hundreds of sequential unitary inward currents (bursts). Average late currents (background plus bursts) were 0.12% of peak early current amplitude at -20 mV. 85% of the late currents were carried by bursting channels. The unit current amplitude was the same for all three types of current, with a conductance of 10.5 pS and a reversal potential of +74 mV. The magnitudes of the three current components were correlated from patch to patch, and all were eliminated by slow inactivation. We conclude that all three components were due to Na+ channel activity. The mean open time of the background currents was approximately 0.25 ms, and the channels averaged 1.2 openings for each event. Neither the open time nor the number of openings of background currents was strongly sensitive to membrane potential. We estimated that background openings occurred at a rate of 0.25 Hz for each channel. Bursts occurred once each 2,000 pulses for each channel (assuming identical channels). The open time during bursts increased with depolarization to 1-2 ms at -20 mV, whereas the closed time decreased to less than 20 ms. The fractional open time during bursts was fitted with m infinity 3 using standard Na+ channel models. We conclude that background currents are caused by a return of normal Na+ channels from inactivation, while bursts are instances where the channel's inactivation gate spontaneously loses its function for prolonged periods.  相似文献   

20.
Summary Whole-cell patch-clamp experiments were performed with neurons cultured from rat dorsal root ganglia (DRG). Two types of Na+ currents were identified on the basis of sensitivity to tetrodotoxin. One type was blocked by 0.1 nm tetrodotoxin, while the other type was insensitive to 10 m tetrodotoxin. The peak amplitude of the tetrodotoxin-insensitive Na+ current gradually decreased after depolarization of the membrane. The steady-state value of the peak amplitude was attained several minutes after the change of holding potential. Such a slow inactivation was not observed in tetrodotoxin-sensitive Na+ current. The slow inactivation of the tetrodotoxin-insensitive Na+ current was kinetically distinct from the ordinary short-time steady-state inactivation. The voltage dependence of the slow inactivation could be described by a sigmoidal function, and its time course had a double-exponential process. A decrease of external pH partially antagonized the slow inactivation, probably through an increased diffusion potential across the membrane. However, the slow inactivation was not due to change in surface negative charges, since a shift of the kinetic parameters along the voltage axis was not observed during the slow inactivation. Due to the slow inactivation, the inactivation curves for the tetrodotoxininsensitive Na+ current were shifted in the negative direction as the prepulse duration was increased. Consequently, the window current activated at potentials close to the resting membrane potential was markedly reduced. Thus, the slow inactivation may be involved in the long-term regulation of the excitability of sensory neurons.We thank Prof. Hirosi Kuriyama for his support and advice and Dr. M. Yoshii for helpful discussions. This study was supported by the Japanese Ministry of Education (Scientific Research 02670090).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号