首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Microsomal estrogen synthetase (aromatase) cytochrome P-450 was purified from fresh human placental microsomes by monoclonal anti-aromatase P-450 antibody-Sepharose 4B chromatography. The purified P-450 showed a single band of 55 kDa on SDS-polyacrylamide gel electrophoresis and the aromatase specific activity on reconstitution was 70 nmol/min/mg protein. The purified P-450 was stable with a t 1/2 of approximately 2 years on storage at -90 degrees C and showed Km = 43 nM for androstenedione aromatization. However, it was unstable under spectral measurement conditions in the presence of sodium dithionite and carbon monoxide and the carbon monoxide difference spectra showed a maximum at 450 nm and a specific content of 9.1 nmol of P-450/mg protein, giving a turnover number of approximately 7.7 per min for the purified aromatase. The one-step immunochemical purification method gave a 490-fold increase of specific activity with 55% yield of aromatase activity of the original microsomes. Analysis of androgen metabolism by the purified aromatase and an apparent large kinetic isotope effect found at the secondary positions when using [19(-3)H3, 4(-14)C] androgens revealed metabolic switching from the first 19-hydroxylation to 1 beta- and 2 beta- monohydroxylation by aromatase. Substrate specificity for [19(-3)H3]androstenedione and testosterone was indicated by differences in the extent of metabolic switching (18% and 30%) and in the 2 beta/1 beta ratio (60/40 and 10/90, respectively). The mouse monoclonal antibody used for immunoaffinity purification suppresses aromatase activity of human placenta, but was totally ineffective for aromatase in goldfish brain and rat ovary. Rabbit polyclonal antibodies to human placental aromatase P-450 suppressed both human placental and rat ovarian aromatase but were ineffective for goldfish brain aromatase. The study indicates that they are isozymes of aromatase based on different structures of P-450.  相似文献   

2.
Aromatase cytochrome P-450, which catalyzes the conversion of androgens to estrogens, was purified from human placental microsomes. The enzyme was extracted with sodium cholate, fractionated by ammonium sulfate precipitation, and subjected to column chromatography in the presence of its substrate, androstenedione, and the nonionic detergent, Nonidet P-40. The preparation exhibits a single major band when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a specific content of 11.5 nmol of P-450/mg of protein. The purified enzyme displays spectroscopic properties typical of the ferric and ferrous forms of cytochrome P-450. Full enzymatic activity can be reconstituted with rabbit liver microsomal cytochrome P-450 reductase and Nonidet P-40. Purified aromatase cytochrome P-450 displays catalytic characteristics similar to the enzyme in intact microsomes in the aromatization of androstenedione, 19-hydroxyandrostenedione and 19-oxoandrostenedione. Testosterone and 16 alpha-hydroxytestosterone are aromatized at maximal rates similar to androstenedione, and all substrates exhibit relative affinities corresponding to those observed in microsomes. We have raised rabbit antibodies to the purified enzyme which show considerable specificity and sensitivity on immunoblots.  相似文献   

3.
N Yoshida  Y Osawa 《Biochemistry》1991,30(12):3003-3010
A simple and efficient method is described for the purification of microsomal aromatase cytochrome P-450 from human placenta. The enzyme was solubilized with Emulgen 913 and sodium cholate and subjected to chromatography on a column of Sepharose 4B coupled with a specific monoclonal antibody, followed by hydroxyapatite column chromatography. The specific cytochrome P-450 content of purified aromatase was 13.1 (12-14.8) nmol/mg of protein. Aromatase assays were carried out with reconstituted systems of bovine liver P-450 reductase and dilauroyl-L-alpha-phosphatidylcholine with [1 beta-3H,4-14C]-androstenedione as substrate. The specific activity of purified aromatase was 65.0 (50.6-74.3) nmol.min-1.(mg of protein)-1 or a turnover rate of 5.0 (4.3-5.9) min-1. The total recovery of purified aromatase activity was 32.2%, and P-450 recovery was 17.6%. The Km of immunoaffinity-purified aromatase was 12, 210, 41, and 2830 nM for androstenedione, 16 alpha-hydroxyandrostenedione, testosterone, and 16 alpha-hydroxytestosterone, respectively. The very high Km value for 16 alpha-hydroxytestosterone aromatization gives a reasonable indication that estriol is not the directly aromatized product in the fetoplacental unit of human pregnancy. The aromatase P-450 was subjected to SDS-polyacrylamide gel electrophoresis in increasing quantities. Silver stain detection techniques indicated a single band having a molecular mass of 55 kDa with greater than 97% purity. The stability analysis showed a half-life of over 4 years on storage at -80 degrees C.  相似文献   

4.
The hemoprotein component of human placental aromatase (estrogen synthetase) has been purified to a high degree of homogeneity by a combination of affinity and adsorption chromatography on aminohexyl-Sepharose, concanavalin-A-Sepharose, and hydroxyapatite. The monomeric form of the enzyme has an Mr of 55000 +/- 1000 as estimated by sodium dodecyl sulfate gel electrophoresis. Its absolute spectrum shows a high-spin Soret band at 394 nm while its reduced, CO-difference spectrum has a maximum at 447 +/- 1 nm. Full reconstitution of aromatase activity was obtained when it was recombined with a homogeneous preparation of the higher-Mr form of either human placental, or bovine hepatic NADPH-cytochrome P-450 reductase. Critical factors for purification of the very unstable, membrane-bound hemoprotein with good retention of activity were, besides the chromatographic sequence, the use of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps) during the solubilization, and the stabilizing effect of the aromatase substrate, 4-androstene-3,17-dione, throughout the procedure. In the presence of NADPH, the reconstituted enzyme system smoothly aromatizes 19-oxoandrostenedione, 19-hydroxyandrostenedione and androstenedione in this order of reactivity. The same reconstituted system also aromatized testosterone, but it was inactive towards 19-norandrostenedione. Known cytochrome P-450 inhibitors decreased its activity. We conclude: (a) the terminal oxidase of human placental aromatase is indeed a cytochrome P-450-type monooxygenase; (b) the multistep aromatization reaction of C19 androstenes is catalyzed by a single enzyme; (c) aromatization of 19-norsteroids reported by other authors must be due to a different aromatase. Experimental data obtained with the reconstituted enzyme are fully compatible with the concept of a reaction mechanism for the aromatization sequence involving an all-trans, antiparallel elimination of the 19-methyl group, the 2 beta proton and the 1 alpha proton, rather than the 1 beta proton, as generally assumed.  相似文献   

5.
19-Norandrostenedione and androstenedione are shown to be metabolized by purified, reconstituted human placental aromatase cytochrome P-450. Kinetic evidence indicates that both steroids share a common catalytic site: 19-norandrostenedione is a competitive inhibitor of androstenedione aromatization, and the Ki value for its inhibition (120 nM) is similar to the Km value for its metabolism (132 nM). The two substrates differ, however, in their sensitivity to inhibition by the heme-iron ligand cyanide; 19-norandrostenedione is approximately 3-fold more sensitive to cyanide inhibition. Spectroscopic studies show that this differential inhibition by cyanide occurs because androstenedione competes with cyanide, whereas 19-norandrostenedione promotes cyanide binding to the heme-iron. It is proposed that these opposite effects on cyanide-iron coordination are due to the proximity of the heme-iron and C-19 of androstenedione in the enzyme-substrate complex, which results in steric exclusion of cyanide from the active site by the C-19 methyl group of androstenedione. Dioxygen is not excluded from binding to the heme-iron during catalysis, presumably because it bonds at an angle, in contrast to the linear bond of iron-cyanide complexes. A model for the active site of aromatase cytochrome P-450 is presented.  相似文献   

6.
Androgen aromatase was found to also be estrogen 2-hydroxylase. The substrate specificity among androgens and estrogens and multiplicity of aromatase reactions were further studied. Through purification of human placental microsomal cytochrome P-450 by monoclonal antibody-based immunoaffinity chromatography and gradient elution on hydroxyapatite, aromatase and estradiol 2-hydroxylase activities were co-purified into a single band cytochrome P-450 with approx. 600-fold increase of both specific activities, while other cytochrome P-450 enzyme activities found in the microsomes were completely eliminated. The purified P-450 showed Mr of 55 kDa, specific heme content of 12.9 ± 2.6 nmol·mg−1 (±SD, N = 4), reconstituted aromatase activity of 111 ± 19 nmol·min−1·mmg−1 and estradiol 2-hydroxylase activity of 5.85 ± 1.23 nmol·min−1·mg−1. We found no evidence for the existence of catechol estrogen synthetase without concomitant aromatase activity. The identity of the P-450 for the two different hormone synthetases was further confirmed by analysis of the two activities in the stable expression system in Chinese hamster ovarian cells transfected with human placental aromatase cDNA, pH β-Aro. Kinetic analysis of estradiol 2-hydroxylation by the purified and reconstituted aromatase P-450 in 0.1 M phosphate buffer (pH 7.6) showed Km of 1.58 μM and Vmax of 8.9 nmol·min−1·mg−1. A significant shift of the optimum pH and Vmax, but not the Km, for placental estrogen 2-hydroxylase was observed between microsomal and purified preparations. Testosterone and androstenedione competitively inhibited estradiol 2-hydroxylation, and estrone and estradiol competitively inhibited aromatization of both testosterone and androstenedione. Estrone and estradiol showed Ki of 4.8 and 7.3 μM, respectively, for testosterone aromatization, and 5.0 and 8.1 μM, respectively, for androstenedione aromatization. Androstenedione and testosterone showed Ki of 0.32 and 0.61 μM, respectively, for estradiol 2-hydroxylation. Our studies showed that aromatase P-450 functions as estrogen 2-hydroxylase as well as androgen 19-, 1β-,and 2β-hydroxylase and aromatase. The results indicate that placental aromatase is responsible for the highly elevated levels of the catechol estrogen and 19-hydroxyandrogen during pregnancy. These results also indicate that the active site structure holds the steroid ssubstrates to face their β-side of the A-ring to the heme, tilted in such a way as to make the 2-position of estrogens and 19-, 1-, and 2-positions of androgens available for monooxygenation.  相似文献   

7.
L E Vickery  J T Kellis 《Steroids》1987,50(1-3):29-36
Aromatase cytochrome P-450 (P-450arom) was purified from human placental microsomes. Preparations exhibit a single major band of approximately 55 kDa on SDS-polyacrylamide gel electrophoresis and have a specific content of 11-13 nmol P-450/mg protein. The purified enzyme exhibits spectral properties typical of ferric and ferrous forms of cytochromes P-450. Full enzymatic activity can be reconstituted with rabbit liver P-450 reductase, and catalytic characteristics similar to aromatase in microsomes are observed. Rabbit antibodies to purified P-450arom were affinity purified and show high specificity and sensitivity on immunoblots.  相似文献   

8.
Aromatase cytochrome P-450 (P-450AROM) was partially purified from human placental microsomes by hydrophobic affinity chromatography using Phenyl-Sepharose and ion-exchange chromatography on DEAE-cellulose. The resulting preparation had a specific activity of 2 nmol/mg protein with respect to cytochrome P-450 content and displayed a type I difference spectrum upon addition of the substrate androstenedione. When the cytochrome P-450-enriched fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained with Coomassie blue, there was an enrichment of two proteins having apparent molecular weights of 50,000 and 55,000. The bands containing these proteins were removed from unstained polyacrylamide gels and injected separately or together into three rabbits. An aliquot of the serum or an immunoglobulin (IgG) fraction prepared from the serum of the rabbit injected with the 55-kDa band or with both the 50- and 55-kDa bands inhibited aromatase activity of human placental microsomes by 80%; this IgG had no effect on 17 alpha-hydroxylase or 21-hydroxylase activities of human fetal adrenal microsomes. In contrast, the serum of the rabbit injected with the 50-kDa band had little capacity to inhibit placental aromatase activity. By immunoblot analysis, it was found that the IgG from the serum of the rabbit immunized with the 55-kDa protein bound specifically to a protein of 55 kDa in human placental microsomes. Monoclonal antibodies were prepared from a hybridoma cell line derived from the spleen cells of mice immunized against the 55-kDa protein. The monoclonal IgG was covalently linked to a Sepharose 4B column and was used for immunoaffinity chromatography of cytochrome P-450AROM. The finding that cytochrome P-450 and the 55-kDa protein were selectively retained by the affinity column and eluted with NaCl (2 M) and glycine (0.2 M, pH 3.0) and that this fraction contained aromatase activity upon reconstitution with purified NADPH-cytochrome P-450 reductase and phospholipid, is indicative that the 55-kDa protein is indeed cytochrome P-450AROM. These findings are also indicative that both the monoclonal and polyclonal IgGs are specific for human cytochrome P-450AROM.  相似文献   

9.
Aromatase activity of goldfish brain synaptosomes was not suppressed by a mouse anti-human placental aromatase cytochrome P-450 monoclonal antibody. A rabbit antiserum to human placental aromatase cytochrome P-450 did not show a significant suppression of the goldfish brain activity when compared to the placental aromatase. However, the stereomechanism of 1,2-hydrogen elimination during the brain aromatization was determined to be stereospecific 1ß, 2ß-elimination which was identical to that of human placentas and ovaries.  相似文献   

10.
Hybridomas were prepared from myeloma cells and spleen cells of BALB/c female mice immunized with hepatic cytochrome P-450E purified from the marine fish, Stenotomus chrysops (scup). Nine independent hybrid clones produced MAbs, either IgG1, IgG2b, or IgM, that bound to purified cytochrome P-450E in radioimmunoassay. Antibodies from one clone MAb (1-12-3), also strongly recognized rat cytochrome P-450MC-B (P-450BNF-B; P-450c). The nine antibodies inhibited reconstituted aryl hydrocarbon hydroxylase (AHH) and ethoxycoumarin O-deethylase of scup cytochrome P-450E to varying degrees, and inhibited AHH activity of beta-naphthoflavone-induced scup liver microsomes in a pattern similar to that in reconstitutions, indicating that cytochrome P-450E is identical to the AHH catalyst induced in this fish by beta-naphthoflavone. MAb 1-12-3 also inhibited the reconstituted AHH activity of the major BNF-induced rat isozyme. Conversely, MAb 1-7-1 to rat cytochrome P-450MC-B had little effect on AHH activity of scup cytochrome P-450E, and did not recognize cytochrome P-450E in radioimmunoassay nor in an immunoblot. Scup cytochrome P-450E and rat cytochrome P-450MC-B thus have at least one common epitope recognized by MAb 1-12-3, but the epitope recognized by Mab 1-7-1 is absent or recognized with low affinity in cytochrome P-450E. The various assays indicate that the nine MAbs against cytochrome P-450E are directed to different epitopes of the molecule. These MAbs should be useful in determining phylogenetic relationships of the BNF- or MC-inducible isozymes and their regulation by other environmental factors.  相似文献   

11.
Estrogen synthetase (aromatase) catalyzes the conversion of androgen into estrogen via two hydroxylations at C19 and a subsequent C19-10 lyase reaction. We report here the results of a reconstitution study using a highly purified aromatase cytochrome P450 monooxygenase enzyme system, with both protein components (cytochrome P450 and NADPH-cytochrome P450 reductase) obtained from human term placental microsomes. By varying one of the components (amounts of cytochrome P450, NADPH-cytochrome P450 reductase, or androgen substrate) as the other two were held constant in four different environments (phospholipid, non-ionic detergent, mixture of phospholipid and non-ionic detergent and buffer alone), we obtained evidence supporting the following conclusions. The reconstituted enzyme is more active and the protein components exhibit much lower apparent Km values in the detergent and/or lipid environment compared with buffer alone. Although the apparent Km and Vmax values for each aromatase protein component differ significantly in most cases with the particular limiting component and environment, the catalytic efficiency (Kcat/Km) was independent of the limiting protein component and varied with the environment only (highest in the lipid-detergent mixture and lowest in lipid alone). When the concentration of androgen substrate (androstenedione or testosterone) was varied at constant amounts of the aromatase protein components (NADPH-cytochrome P450 reductase saturating), the Km was lower and the Vmax was higher for adrostenedione. The specificity constant (Vmax/Km) was a function of the reconstitution environment (highest in lipid alone and lowest in detergent alone) and was, on average, about 4-fold higher for androstenedione in a particular environment. The extent of production of 19-oxygenated androgen intermediates (19-hydroxy and 19-oxo androstenedione) was examined at three different levels of aromatase cytochrome P450 (subsaturating, saturating, super-saturating) relative to the NADPH-cytochrome P450 reductase component in the three different hydrophobic environments using androstenedione as substrate. Both 19-oxygenated androgens, each made in comparable amounts relative to control, were isolatable in greatest amounts under cytochrome P450 super-saturating conditions in the detergent-lipid mixed environment, and in least amounts under cytochrome P450 subsaturating conditions in the lipid-only environment. Based on these data, we propose that 19-oxygenated androgen intermediates are biosynthesized sequentially in a step-wise fashion as the cytochrome P450 and NADPH-cytochrome P450 reductase form transient complexes, and that the amount of isolatable 19-oxygenated androgen is proportional to the amount of excess cytochrome P450 component.  相似文献   

12.
Microsomal estrogen synthetase (cytochrome P-450ES), also known as aromatase, was purified from fresh human placenta microsomes by DEAE-Trisacryl and testosterone-agarose chromatography. Estrogen synthetase assays were done with androstenedione as substrate, NADPH as electron donor, and a partially purified P-450 reductase from human placenta as the electron carrier. The specific cytochrome P-450 content of the purified P-450 was 0.67 nmol mg-1 of protein, and the preparation contained no cytochrome P-420. The absorbance maximum was 448.5 nm. The specific estrogen synthetase activity of the purified P-450ES fraction was 35 nmol min-1 nmol-1 of cytochrome P-450 or 23.3 nmol min-1 mg-1 of protein. The latter value shows a 179-fold purification with a yield greater than 1% in the two-step procedure. Kinetic constants for the reaction were measured with androstenedione as the aromatizable substrate. The Km was 1.4 nM and the Vmax was 37 nmol min-1 nmol-1 of P-450. The purified enzyme aromatized androstenedione and testosterone at identical rates; androstenedione gave only estrone, and testosterone gave only estradiol-17 beta. Dehydroepiandrosterone was not detectably aromatized or otherwise metabolized. Neither 16 alpha-hydroxytestosterone nor 16 alpha-hydroxyandrostenedione was aromatized. No hydroxysteroid dehydrogenase or reductase was detected in direct assays. No free reaction intermediates were detected in aromatization assay incubation mixtures. The purity of the product and the simplicity of the preparation recommend it for use in further studies of the enzyme.  相似文献   

13.
Human placental mitochondrial cytochrome P-450 was purified to electrophoretic homogeneity by hydrophobic, anion exchange and cation exchange column chromatography. The specific content of the purified protein was 15.7 nmol/mg protein and it showed a single band mol. wt 48,000 D in SDS-gel electrophoresis. When reconstituted with bovine adrenal adrenodoxin reductase and adrenodoxin it converted cholesterol to pregnenolone (cholesterol side-chain cleavage activity, CSCC) at the rate of 1 pmol/min/pmol P-450. Antibodies against the purified protein were raised in rabbits. Inhibition studies demonstrated 85% inhibition of placental CSCC activity at an antibody/protein ratio of 10:1. Placental microsomal aromatase activity was inhibited by 47% at the same antibody/protein ratio. The antibody inhibited bovine mitochondrial CSCC activity by 87% at the same antibody/protein ratio. Placental microsomal 7-ethoxycoumarin O-deethylase, aryl hydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities were not significantly inhibited by the antibody. The results indicate that the purified protein catalyzes cholesterol side-chain cleavage reaction, human placental microsomal aromatase and bovine adrenal mitochondrial P-450scc may share common antigenic determinants with placental P-450scc, but the placental microsomal xenobiotic-metabolizing cytochrome(s) is (are) distinctly different.  相似文献   

14.
Confluent human endometrial stromal cells were cultured in medium with no hormone or supplemented with medroxyprogesterone acetate (MPA), estradiol (E2), and porcine relaxin (RLX) for 5 days. These stromal cells were then labeled with [35S]methionine for 3 h. The radioactive proteins in the particulate fraction of cell homogenate were extracted by detergent and incubated with antisera to purified placental aromatase cytochrome P-450 (P-450arom) and NADPH-cytochrome P-450 reductase to isolate the radio-labeled aromatase enzyme components. Analysis of the radio-labeled protein, isolated by antibody to the cytochrome P-450arom from different preparations (P45FBIII or R-8-2) showed a major band at molecular weight 54k on SDS polyacrylamide gel electrophoresis (SDS-PAGE). The intensity of 54k band was stronger in hormone treated stromal cells than that of control in parallel with the increase of aromatase activity. The radio-labeled protein isolated by anti-NADPH cytochrome P-450 reductase, REDFBIV, showed a major band at the molecular weight 73k on SDS-PAGE with comparable intensity in control and hormone treated samples. Thus, the apparent molecular weights of endometrial cytochrome P-450arom and cytochrome P-450 reductase were identical to placental aromatase enzyme system. When a secretory endometrium and a decidua were labeled with [35S]methionine, the cytochrome P-450arom was detected only in the decidua. NADPH cytochrome P-450 reductase was detected both in the endometrium and the decidua. These results show that antisera to placental aromatase enzyme system cross reacts with the endometrial aromatase enzyme components. The synthesis of cytochrome P-450arom was stimulated by MPA, E2 and RLX while the synthesis of the NADPH-cytochrome P-450 reductase aromatase component was not affected by the hormone.  相似文献   

15.
The microsomal fraction isolated from the testis of the urodele amphibian, Necturus maculosus, is very rich in cytochrome P-450 and three cytochrome P-450-dependent steroidogenic enzyme activities, 17 alpha-hydroxylase, C-17, 20-lyase, and aromatase. In this study, we investigated aspects of these reactions using both spectral and enzyme techniques. In animals obtained at different points in the annual cycle, Necturus testis microsomal P-450 concentrations ranged from 0.6-1.8 nmol/mg protein. Substrates for the three enzymes generated type I difference spectra; progesterone and 17 alpha-hydroxyprogesterone appeared to bind to one P-450 species while the aromatase substrates, androstenedione, 19-hydroxyandrostenedione, and testosterone, all bound to another P-450 species. Spectral binding constants (Ks) for these interactions were determined. Michaelis constants (Km) and maximum velocities were determined for progesterone 17 alpha-hydroxylation, 17 alpha-hydroxyprogesterone side-chain cleavage, and for the aromatization of androstenedione, 19-hydroxyandrostenedione, and testosterone. Measured either by spectral or kinetic methods, progesterone, androstenedione, and 19-hydroxyandrostenedione were high affinity substrates (Ks or Km less than 0.3 microM), while 17 alpha-hydroxyprogesterone and testosterone were low affinity substrates (Ks or Km = 0.6-4.8 microM). As evidence for the participation of cytochrome P-450 in these reactions, carbon monoxide was found to inhibit each of the enzyme activities studied. The activity of NADPH-cytochrome c reductase, a component of cytochrome P-450-dependent reactions, was also high in Necturus testis microsomes.  相似文献   

16.
Regulation of aromatase in estrogen-producing cells   总被引:1,自引:0,他引:1  
Human adipose stromal cells in monolayer culture aromatize androstenedione to estrone. The rate of aromatization is stimulated 20- to 30-fold by glucocorticoids when fetal calf serum is present in the culture medium and by dibutyryl cyclic AMP in the absence of serum. The action of dibutyryl cyclic AMP to stimulate aromatase activity is potentiated markedly by phorbol esters and inhibited by growth factors, such as EGF. In order to investigate the mechanisms underlying this multifactorial regulation, we have prepared polyclonal and monoclonal antibodies specific for aromatase cytochrome P-450. By use of these antibodies it was demonstrated that the action of these various factors to regulate aromatase activity was caused by alterations in the rate of synthesis of aromatase cytochrome P-450, whereas the synthesis of the reductase component of the aromatase enzyme complex was relatively unaffected. The changes in the rate of synthesis of aromatase cytochrome P-450 were, in turn, reflective of changes in the levels of translatable mRNA specific for this protein. In order to analyze the levels of aromatase cytochrome P-450 mRNA directly, we have isolated a cloned cDNA insert complementary to the mRNA encoding aromatase cytochrome P-450, by screening a lambda gt 11 human placental cDNA library utilizing the polyclonal anti-aromatase P-450 IgG. Use of this cDNA probe in Northern analysis of RNA extracted from human adipose stromal cells revealed that the changes in translatable mRNA resulting from incubation of the cells with the various regulatory factors were due to changes in the absolute levels of mRNA encoding this protein.  相似文献   

17.
The microsomes of placenta and uterus from pregnant rabbits have been found to catalyze the omega-hydroxylation of PGE1, PGE2, PGF2 alpha, and PGA1 as well as the omega- and (omega-1)-hydroxylation of palmitate and myristate in the presence of NADPH. These activities were greatly inhibited by carbon monoxide, indicating the involvement of cytochrome P-450. The apparent Km for PGE1 was 2.38 microM and 2.1 microM with the placental and uterus microsomes, respectively. Cytochrome P-450 has been solubilized with 1% cholate from the placental microsomes, and partially purified by chromatography on 6-amino-n-hexyl Sepharose 4B, DEAE-Sephadex A-50 and hydroxylapatite columns. The partially purified cytochrome P-450 efficiently catalyzed the omega-hydroxylation of various prostaglandins such as PGE1, PGE2, PGF2 alpha, PGD2, and PGA1 in a reconstituted system containing NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. The reconstituted system also hydroxylated palmitate and myristate at the omega- and (omega-1)-position, but could not hydroxylate laurate. These catalytic properties resemble those of a new form of cytochrome P-450 highly purified from the lung microsomes of progesterone-treated rabbits (Yamamoto, S., Kusunose, E., Ogita, K., Kaku, M., Ichihara, K., and Kusunose, M. (1984) J. Biochem. 96, 593-603). This type of cytochrome P-450, viz., cytochrome P-450 with high prostaglandin omega-hydroxylase activity may play a role in the regulation of prostaglandin levels in pregnancy.  相似文献   

18.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

19.
Two forms of cytochrome P-450 (P-450), designated P-450MP-1 and P-450MP-2, were purified to electrophoretic homogeneity from human liver microsomes on the basis of mephenytoin 4-hydroxylase activity. Purified P-450MP-1 and P-450MP-2 contained 12-17 nmol of P-450/mg of protein and had apparent monomeric molecular weights of 48,000 and 50,000, respectively. P-450MP-1 and P-450MP-2 were found to be very similar proteins as judged by chromatographic behavior on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE- and CM-cellulose columns, spectral properties, amino acid composition, peptide mapping, double immunodiffusion analysis, immunoinhibition, and N-terminal amino acid sequences. In vitro translation of liver RNA yielded polypeptides migrating with P-450MP-1 or P-450MP-2, depending upon which form was in each sample, indicating that the two P-450s are translated from different mRNAs. When reconsituted with NADPH-cytochrome-P-450 reductase and L-alpha-dilauroyl-sn-glyceryo-3-phosphocholine, P-450MP-1 and P-450MP-2 gave apparently higher turnover numbers for mephenytoin 4-hydroxylation than did the P-450 in the microsomes. The addition of purified rat or human cytochrome b5 to the reconstituted system caused a significant increase in the hydroxylation activity; the maximum stimulation was obtained when the molar ratio of cytochrome b5 to P-450 was 3-fold. Rabbit anti-human cytochrome b5 inhibited NADH-cytochrome-c reductase and S-mephenytoin 4-hydroxylase activities in human liver microsomes. In the presence of cytochrome b5, the Km value for S-mephenytoin was 1.25 mM with all five purified cytochrome P-450s preparations, and Vmax values were 0.8-1.25 nmol of 4-hydroxy product formed per min/nmol of P-450. P-450MP is a relatively selective P-450 form that metabolizes substituted hydantoins well. Reactions catalyzed by purified P-450MP-1 and P-450MP-2 preparations and inhibited by anti-P-450MP in human liver microsomes include S-mephenytoin 4-hydroxylation, S-nirvanol 4-hydroxylation, S-mephenytoin N-demethylation, and diphenylhydantoin 4-hydroxylation. Thus, at least two very similar forms of human P-450 are involved in S-mephenytoin 4-hydroxylation, an activity which shows genetic polymorphism.  相似文献   

20.
19-Oxoandrostenedione, the product of 19-hydroxyandrostenedione by the 19-oxidase activity of the purified P-450(11)beta system of adrenal cortex mitochondria, was further oxidized and demethylated at the 10-position to give the C18-steroids, estrone (aromatase reaction) and 19-norandrostenedione (nonaromatizing 10-demethylase or C10-19 lyase reaction). These reactions, together with the initial hydroxylation of androstenedione at C19, form a sequence of P-450(11)beta-catalyzed C19-steroid 19-monooxygenase reactions. P-450(11)beta is thus similar to placental endoplasmic P-450AROM in some of its substrate specificity, but the two forms of P-450 appear to be different in both physiology and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号