首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In an attempt to elucidate the mechanism by which the rate of fatty acid oxidation is tuned to the energy demand of the heart, the effects of changing intramitochondrial ratios of [acetyl-CoA]/[CoASH] and [NADH]/[NAD+] on the rate of beta-oxidation were studied. When 10 mM L-carnitine was added to coupled rat heart mitochondria to lower the ratio of [acetyl-CoA]/[CoASH], the rate of palmitoylcarnitine beta-oxidation, as measured by the formation of acid-soluble products, was stimulated more than fourfold at state 4 respiration while beta-oxidation at state 3 respiration was hardly affected. Neither oxaloacetate nor acetoacetate, added to mitochondria to lower the [NADH]/[NAD+] ratio, stimulated beta-oxidation. Rates of respiration at states 3 and 4 were unchanged by additions of L-carnitine, oxaloacetate, or acetoacetate. Determinations of intramitochondrial ratios of [acetyl-CoA]/[CoASH] by high performance liquid chromatography yielded values close to 10 for palmitoylcarnitine-supported respiration at state 4 and 2.5 at state 3 respiration. Addition of 10 mM L-carnitine caused a dramatic decrease of these ratios to less than 0.2 at both respiration states. Studies with purified or partially purified enzymes revealed strong inhibitions of 3-ketoacyl-CoA thiolase by acetyl-CoA and of L-3-hydroxyacyl-CoA dehydrogenase by NADH. Moreover, the activity of 3-ketoacyl-CoA thiolase at concentrations of acetyl-CoA and CoASH prevailing at state 3 respiration was 4 times higher than its activity in the presence of acetyl-CoA and CoASH observed at state 4. Altogether, this study leads to the conclusion that the rate of beta-oxidation in heart can be regulated by the intramitochondrial ratio of [acetyl-CoA]/[CoASH] which reflects the energy demand of the tissue. The thiolytic cleavage catalyzed by 3-ketoacyl-CoA thiolase may be the site at which beta-oxidation is controlled by the [acetyl-CoA]/[CoASH] ratio.  相似文献   

2.
3.
J P Blond  P Clouet  P Lemarchal 《Biochimie》1975,57(3):361-367
The oxidation of [14 14-C] or [1 14-C] erucic acid by isolated mitochondria from Rat heart has been studied and compared with that of [10 14-C] oleic acid in varying conditions of incubation. Erucic acid is converted to CO2 and acid-soluble compounds much more slowly than oleic acid. The acid-soluble compounds which have been identified are acylcarnitines, ketone bodies and intermediates from the Krebs cycle; they are found in similar proportions for both substrates. Moreover, the oxidation rate of erucyl-CoA is comparable, if not equal, to that of oleyl-CoA in the same conditions. These results are discussed here. They lead to the conclusion that erucic acid is oxidized by isolated Rat heart mitochondria through the beta oxidation pathway, and that its oxidation is limited owing to its slow activation rate.  相似文献   

4.
5.
We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochondria. Human mitochondrial proteins determined by experimental and computational methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mitochondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which predicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we reconstructed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health.  相似文献   

6.
Chemo-enzymatic epoxidation of oleic acid (OA) and its methyl ester has been performed using hydrogen peroxide and immobilized lipase from Candida antarctica (Novozym® 435). The purpose of the study was to characterize the reaction under solvent-free conditions. The reaction temperature had a significant impact on epoxidation of OA. At lower temperatures, the substrate conversion was hindered by the formation of solid epoxystearic acid product. Nearly 90% conversion of OA to the epoxide product was obtained after 6?h at 50°C. Longer reaction times at 40°C and above resulted in by-product formation and eventually lowered the product yield. In contrast, the reaction with methyl oleate (MO) was less influenced by temperature. Almost complete epoxidation was achieved at 40–60°C; the higher the temperature the shorter was the reaction time. The main epoxidation product obtained was epoxystearic acid methyl ester (EME), and the remaining was epoxystearic acid (EA) formed by the hydrolytic action of the lipase. Recycling of the lipase for epoxidation of MO at 50°C indicated that the immobilized enzyme was prone to activity loss.  相似文献   

7.
Chemo-enzymatic epoxidation of oleic acid (OA) and its methyl ester has been performed using hydrogen peroxide and immobilized lipase from Candida antarctica (Novozym® 435). The purpose of the study was to characterize the reaction under solvent-free conditions. The reaction temperature had a significant impact on epoxidation of OA. At lower temperatures, the substrate conversion was hindered by the formation of solid epoxystearic acid product. Nearly 90% conversion of OA to the epoxide product was obtained after 6 h at 50°C. Longer reaction times at 40°C and above resulted in by-product formation and eventually lowered the product yield. In contrast, the reaction with methyl oleate (MO) was less influenced by temperature. Almost complete epoxidation was achieved at 40-60°C; the higher the temperature the shorter was the reaction time. The main epoxidation product obtained was epoxystearic acid methyl ester (EME), and the remaining was epoxystearic acid (EA) formed by the hydrolytic action of the lipase. Recycling of the lipase for epoxidation of MO at 50°C indicated that the immobilized enzyme was prone to activity loss.  相似文献   

8.
9.
Incubation of rat heart sarcolemma with the methyl donor S-adenosyl-L-[methyl-3H] methionine resulted in N-methylation of phosphatidylethanolamine and methylation of a heterogenous fraction of nonpolar lipids in the membrane. Oleic acid reduced the synthesis of N-methylated phospholipids and stimulated the methyl group incorporation into nonpolar lipids in a concentration-dependent manner. Both methylation reactions were not affected when oleic acid was substituted by methyl ester of oleic acid or by the detergents sodium deoxycholate or Triton X-100. This study suggests that the enzymatic biosynthesis of the N-methylated phospholipids may be altered by free fatty acids.  相似文献   

10.
Dilute aqueous systems composed of sodium oleate micelles and sodium oleate/oleic acid vesicles were investigated as a function of pH by electron spin resonance spectroscopy with TEMPO-stearate TEMPO-stearamide as well as with a positively charged water soluble spin label, TEMPO-choline. The dynamics of the three TEMPO-spin labels were found to be sensitive to changes in the interfacial region of the aggregates as a function of pH. The results obtained are consistent with the formation of a hydrogen bond network (RCOO ↔ HOOCR) at the surface of the sodium oleate/oleic acid system in the course of the transformation of micelles into the closed bilayers (vesicles). Vesicles formation below pH 10 was determined independently with a spin labeled glucose derivative.  相似文献   

11.
Cis-5 double bond in a fatty acid or when encountered through the beta-oxidation of an odd-numbered double-bond unsaturated fatty acid presents as a metabolic block to the further beta-oxidation. Cis-5-fatty acyl-CoA cannot be beta-oxidized to cis-3-enoyl-CoA as suggested by the conventional pathway. Instead, this metabolic block can only be removed through an NADPH-dependent reduction of 5-enoyl-CoA, possibly mediated by a 5-enoyl-CoA reductase. In the case of oleic acid two cycles of beta-oxidation yield cis-5-tetradecenoyl-CoA. This intermediate is then reduced to tetradecanoyl-CoA, which is metabolized further via normal beta-oxidation cycles. The conventional pathway through cis-3-dodecenoyl-CoA does not operate in rat liver.  相似文献   

12.
It has been shown by the method of low-temperature ESR-spectroscopy that partial blocking with formaldehyde of electron intake into the respiratory chain promotes the maintenance of a definite level of oxidation in the respiratory chain carriers and preservation of its nativity.  相似文献   

13.
Mitochondrial beta-oxidation provides much of the fuel requirements of heart and skeletal muscle despite the malonyl-CoA concentration greatly exceeding the IC(50) of carnitine palmitoyl transferase for malonyl-CoA. To try to explore the relationship between inhibition of carnitine palmitoyl transferase I activity and beta-oxidation flux, we measured the flux control coefficient of carnitine palmitoyl transferase I over beta-oxidation carbon flux in suckling rat heart mitochondria. The flux control coefficient was found to be 0.08 +/- 0.05 and 50% of carnitine palmitoyl transferase I activity could be inhibited before beta-oxidation flux was affected. These observations may help to explain the presence of high rates of beta-oxidation despite the high concentration of malonyl-CoA in rat heart; we hypothesize that although not rate-limiting in vitro, carnitine palmitoyl transferase is rate-limiting in vivo because of the high malonyl-CoA concentration in heart and muscle.  相似文献   

14.
15.
The oxidation of erucic acid by rat heart mitochondria   总被引:1,自引:0,他引:1  
  相似文献   

16.
The contribution of peroxisomal fatty acid beta-oxidation to ethanol metabolism was examined in deermice hepatocytes. Addition of 1 mM oleate to hepatocytes isolated from fasted alcohol dehydrogenase (ADH)-positive deermice in the presence of 4-methylpyrazole or to hepatocytes from fasted or fed ADH-negative deermice produced only a slight and statistically not significant increase in ethanol oxidation. Lactate (10 mM), which is not a peroxisomal substrate, showed a greater effect on ethanol oxidation. There was also a lack of oleate effect on the oxidation of ethanol by hepatocytes of ADH-positive deermice. Furthermore, in ADH-negative deermice, the catalase inhibitor azide (0.1 mM) did not inhibit the increase in ethanol oxidation by oleate and lactate. The rate of oleate oxidation by hepatocytes from fasted ADH-negative deermice was much lower than that of ethanol. These results indicate that in deermice hepatocytes, peroxisomal fatty acid oxidation does not play major role in ethanol metabolism.  相似文献   

17.
18.
The effects of ischemia and postischemic reperfusion on the functions of the heart and its mitochondria were studied with special attention to the effect of nitric oxide (NO) by treatment of rat hearts with the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) or its noninhibitory isomer NG-nitro-D-arginine methyl ester (D-NAME). NO generated during reperfusion caused increase in coronary flow (CF), but had no effect on the left ventricular pressure (LVP) or heart rate (HR). The ATP level of the heart decreased during ischemia and was not completely restored by introduction of oxygen during reperfusion due to damage of complexes I and II of the respiratory chain of mitochondria by NO. Inhibition of the respiratory chain resulted in generation of hydrogen peroxide, and NO and NO-derived species generated after production of NO caused further damage of various proteins in mitochondria, such as complexes I and II of the respiratory chain and pyruvate dehydrogenase (PDH). These results suggested that NO generated on reperfusion was the primary cause of mitochondrial dysfunction by damage of complexes I and II of the respiratory chain, with consequent increase of CF in the heart.  相似文献   

19.
Proteins of inner mitochondrial membranes of the albino rat myocardium during postnatal development of 1, 3 and 6 months old animals were electrophoretically separated in 10% polyacrylamide gel. The rate of 14C-amino acids incorporation into examined proteins was determined in vitro. Specific radioactivity of the total mitochondrial fraction decreased in the course of the postnatal development. That of outer membranes remained unchanged, though it sharply increased in inner membranes of mature animals as compared with animals aged one month. Levels of radioactive precursor incorporation in separate protein fractions of inner membranes of the myocardium mitochondria were estimated.  相似文献   

20.
Our understanding of the role played by reactive oxygen and nitrogen species in disease pathology and ageing is still insufficient. Reactive oxygen species and reactive nitrogen species can initiate protein and lipid oxidative damage that may be the most important contribution to ageing and age-related heart diseases. In the present study, we investigated the effect of ageing on oxidative damage of protein amino acid residues and lipids in heart homogenate and mitochondria of 4- and 26-month-old Wistar rats. Levels of dityrosine and levels of lysine conjugates increased in heart homogenate during ageing, although levels of conjugated dienes did not change. We observed significantly oxidative modification of tryptophan in heart mitochondria and increased levels of dityrosine with advancing age. However, levels of lysine conjugates, conjugated dienes as well as relative level of cytochrome c oxidase were unchanged in heart mitochondria during ageing. The results of this study suggest a different mechanism of oxidative modification in heart compartments during ageing and moreover, mitochondria and other cellular compartments are targets for oxidative modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号