首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ure2, a regulator of nitrogen metabolism, is the protein determinant of the [URE3] prion state in Saccharomyces cerevisiae. Upon conversion into the prion form, Ure2 undergoes a heritable conformational change to an amyloid-like aggregated state and loses its regulatory function. A number of molecular chaperones have been found to affect the prion properties of Ure2. The studies carried out in our laboratory have been aimed at elucidating the structure of Ure2 fibrils, the mechanism of amyloid formation and the effect of chaperones on the fibril formation of Ure2.  相似文献   

2.
The Ure2 protein of Saccharomyces cerevisiae can become a prion (infectious protein). At very low frequencies Ure2p forms an insoluble, infectious amyloid known as [URE3], which is efficiently transmitted to progeny cells or mating partners that consequently lose the normal Ure2p nitrogen regulatory function. The [URE3] prion causes yeast cells to grow slowly, has never been identified in the wild, and confers no obvious phenotypic advantage. An N-terminal asparagine-rich domain determines Ure2p prion-forming ability. Since ure2Delta strains are complemented by plasmids that overexpress truncated forms of Ure2p lacking the prion domain, the existence of the [URE3] prion and the evolutionary conservation of an N-terminal extension have remained mysteries. We find that Ure2p function is actually compromised in vivo by truncation of the prion domain. Moreover, Ure2p stability is diminished without the full-length prion domain. Mca1p, like Ure2p, has an N-terminal Q/N-rich domain whose deletion reduces its steady-state levels. Finally, we demonstrate that the prion domain may affect the interaction of Ure2p with other components of the nitrogen regulation system, specifically the negative regulator of nitrogen catabolic genes, Gzf3p.  相似文献   

3.
Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer’s, Parkinson’s, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the basis of yeast prion [URE3]. The Ure2p prion domain is largely disordered. Residual structures, if any, in the disordered region may play an important role in the aggregation process. Studies of Ure2p prion domain are complicated by its high aggregation propensity, which results in a mixture of monomer and aggregates in solution. Previously we have developed a solid-support electron paramagnetic resonance (EPR) approach to address this problem and have identified a structured state for the Alzheimer’s amyloid-β monomer. Here we use solid-support EPR to study the structure of Ure2p prion domain. EPR spectra of Ure2p prion domain with spin labels at every fifth residue from position 10 to position 75 show similar residue mobility profile for denaturing and native buffers after accounting for the effect of solution viscosity. These results suggest that Ure2p prion domain adopts a completely disordered structure in the native buffer. A completely disordered Ure2p prion domain implies that the amyloid formation of Ure2p, and likely other Q/N-rich yeast prion proteins, is primarily driven by inter-molecular interactions.  相似文献   

4.
The difference between the prion and the non-prion form of a protein is given solely by its three-dimensional structure, according to the prion hypothesis. It has been shown that solid-state NMR can unravel the atomic-resolution three-dimensional structure of prion fragments but, in the case of Ure2p, no highly resolved spectra are obtained from the isolated prion domain. Here, we demonstrate that the spectra of full-length fibrils of Ure2p interestingly lead to highly resolved solid-state NMR spectra. Prion fibrils formed under physiological conditions are therefore well-ordered objects on the molecular level. Comparing the full-length NMR spectra with the corresponding spectra of the prion and globular domains in isolation reveals that the globular part in particular shows almost perfect structural order. The NMR linewidths in these spectra are as narrow as the ones observed in crystals of the isolated globular domain. For the prion domain, the spectra reflect partial disorder, suggesting structural heterogeneity, both in isolation and in full-length Ure2p fibrils, although to different extents. The spectral quality is surprising in the light of existing structural models for Ure2p and in comparison to the corresponding spectra of the only other full-length prion fibrils (HET-s) investigated so far. This opens the exciting perspective of an atomic-resolution structure determination of the fibrillar form of a prion whose assembly is not accompanied by significant conformational changes and documents the structural diversity underlying prion propagation.  相似文献   

5.
Ure2p of Candida albicans (Ure2(albicans) or CaUre2p) can be a prion in Saccharomyces cerevisiae, but Ure2p of Candida glabrata (Ure2(glabrata)) cannot, even though the Ure2(glabrata) N-terminal domain is more similar to that of the S. cerevisiae Ure2p (Ure2(cerevisiae)) than Ure2(albicans) is. We show that the N-terminal N/Q-rich prion domain of Ure2(albicans) forms amyloid that is infectious, transmitting [URE3alb] to S. cerevisiae cells expressing only C. albicans Ure2p. Using solid-state nuclear magnetic resonance of selectively labeled C. albicans Ure2p(1-90), we show that this infectious amyloid has an in-register parallel β-sheet structure, like that of the S. cerevisiae Ure2p prion domain and other S. cerevisiae prion amyloids. In contrast, the N/Q-rich N-terminal domain of Ure2(glabrata) does not readily form amyloid, and that formed upon prolonged incubation is not infectious.  相似文献   

6.
Residues 1-89 constitute the Asn- and Gln-rich segment of the Ure2p protein and produce the [URE3] prion of Saccharomyces cerevisiae by forming the core of intracellular Ure2p amyloid. We report the results of solid-state nuclear magnetic resonance (NMR) measurements that probe the molecular structure of amyloid fibrils formed by Ure2p1-89 in vitro. Data include measurements of intermolecular magnetic dipole-dipole couplings in samples that are 13C-labeled at specific sites and two-dimensional 15N-13C and 13C-13C NMR spectra of samples that are uniformly 15N- and 13C-labeled. Intermolecular dipole-dipole couplings indicate that the beta-sheets in Ure2p1-89 fibrils have an in-register parallel structure. An in-register parallel beta-sheet structure permits polar zipper interactions among side chains of Gln and Asn residues and explains the tolerance of [URE3] to scrambling of the sequence in residues 1-89. Two-dimensional NMR spectra of uniformly labeled Ure2p1-89 fibrils, even when fully hydrated, show NMR linewidths that exceed those in solid-state NMR spectra of fibrils formed by residues 218-289 of the HET-s prion protein of Podospora anserina [as originally reported in Siemer, A. B., Ritter, C., Ernst, M., Riek, R., and Meier, B. H. (2005) Angew. Chem., Int. Ed. 44, 2441-2444 and confirmed by measurements reported here] by factors of three or more, indicating a lower degree of structural order at the molecular level in Ure2p1-89 fibrils. The very high degree of structural order in HET-s fibrils indicated by solid-state NMR data is therefore not a universal characteristic of prion proteins, and is likely to be a consequence of the evolved biological function of HET-s in heterokaryon incompatibility. Analysis of cross peak intensities in two-dimensional NMR spectra of uniformly labeled Ure2p1-89 fibrils suggests that certain portions of the amino acid sequence may not participate in a rigid beta-sheet structure, possibly including portions of the Asn-rich segment between residues 44 and 76.  相似文献   

7.
BACKGROUND: The [URE3] non-Mendelian element of the yeast S. cerevisiae is due to the propagation of a transmissible form of the protein Ure2. The infectivity of Ure2p is thought to originate from a conformational change of the normal form of the prion protein. This conformational change generates a form of Ure2p that assembles into amyloid fibrils. Hence, knowledge of the three-dimensional structure of prion proteins such as Ure2p should help in understanding the mechanism of amyloid formation associated with a number of neurodegenerative diseases. RESULTS: Here we report the three-dimensional crystal structure of the globular region of Ure2p (residues 95--354), also called the functional region, solved at 2.5 A resolution by the MAD method. The structure of Ure2p 95--354 shows a two-domain protein forming a globular dimer. The N-terminal domain is composed of a central 4 strand beta sheet flanked by four alpha helices, two on each side. In contrast, the C-terminal domain is entirely alpha-helical. The fold of Ure2p 95--354 resembles that of the beta class glutathione S-transferases (GST), in line with a weak similarity in the amino acid sequence that exists between these proteins. Ure2p dimerizes as GST does and possesses a potential ligand binding site, although it lacks GST activity. CONCLUSIONS: The structure of the functional region of Ure2p is the first crystal structure of a prion protein. Structure comparisons between Ure2p 95--354 and GST identified a 32 amino acid residues cap region in Ure2p exposed to the solvent. The cap region is highly flexible and may interact with the N-terminal region of the partner subunit in the dimer. The implication of this interaction in the assembly of Ure2p into amyloid fibrils is discussed.  相似文献   

8.
The protein Ure2 from baker's yeast is associated with a heritable and transmissible phenotypic change in the yeast Saccharomyces cerevisiae. Such prion properties are thought to arise from the fact that Ure2p is able to self-assemble into insoluble fibrils. Assemblies of Ure2p are composed of full-length proteins in which the structure of the globular, functional, C-terminal domain is retained. We have carried out structural studies on full-length, wild-type Ure2p fibrils with a regularly twisted morphology. Using electron microscopy and cryo-electron microscopy with image analysis we show high-resolution images of the twisted filaments revealing details within the fibrillar structure. We examine these details in light of recent proposed models and discuss how this new information contributes to an understanding of the architecture of Ure2p yeast prion fibrils.  相似文献   

9.
Shewmaker F  Ross ED  Tycko R  Wickner RB 《Biochemistry》2008,47(13):4000-4007
The [URE3] and [PSI (+)] prions of Saccharomyces cerevisiae are self-propagating amyloid forms of Ure2p and Sup35p, respectively. The Q/N-rich N-terminal domains of each protein are necessary and sufficient for the prion properties of these proteins, forming in each case their amyloid cores. Surprisingly, shuffling either prion domain, leaving amino acid content unchanged, does not abrogate the ability of the proteins to become prions. The discovery that the amino acid composition of a polypeptide, not the specific sequence order, determines prion capability seems contrary to the standard folding paradigm that amino acid sequence determines protein fold. The shuffleability of a prion domain further suggests that the beta-sheet structure is of the parallel in-register type, and indeed, the normal Ure2 and Sup35 prion domains have such a structure. We demonstrate that two shuffled Ure2 prion domains capable of being prions form parallel in-register beta-sheet structures, and our data indicate the same conclusion for a single shuffled Sup35 prion domain. This result confirms our inference that shuffleability indicates parallel in-register structure.  相似文献   

10.
Prions     
《朊病毒》2013,7(2):72-79
The prion hypothesis1-3 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4, 5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6, 7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and – most probably - a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.  相似文献   

11.
[URE3] is a non-Mendelian genetic element in Saccharomyces cerevisiae, which is caused by a prion-like, autocatalytic conversion of the Ure2 protein (Ure2p) into an inactive form. The presence of [URE3] allows yeast cells to take up ureidosuccinic acid in the presence of ammonia. This phenotype can be used to select for the prion state. We have developed a novel reporter, in which the ADE2 gene is controlled by the DAL5 regulatory region, which allows monitoring of Ure2p function by a colony color phenotype. Using this reporter, we observed induction of different [URE3] prion variants ("strains") following overexpression of the N-terminal Ure2p prion domain (UPD) or full-length Ure2p. Full-length Ure2p induced two types of [URE3]: type A corresponds to conventional [URE3], whereas the novel type B variant is characterized by relatively high residual Ure2p activity and efficient curing by coexpression of low amounts of a UPD-green fluorescent protein fusion protein. Overexpression of UPD induced type B [URE3] but not type A. Both type A and B [URE3] strains, as well as weak and strong isolates of type A, were shown to stably maintain different prion strain characteristics. We suggest that these strain variants result from different modes of aggregation of similar Ure2p monomers. We also demonstrate a procedure to counterselect against the [URE3] state.  相似文献   

12.
The GdmCl-induced equilibrium unfolding and dissociation of the dimeric yeast prion protein Ure2, and its prion domain deletion mutants Delta 15-42Ure2 and 90Ure2, was studied by small angle X-ray scattering (SAXS) using synchrotron radiation and by chemical cross-linking with dithiobis(succinimidyl propionate) (DTSP). The native state is globular and predominantly dimeric prior to the onset of unfolding. R(g) values of 32 and 45A were obtained for the native and 5M GdmCl denatured states of Delta 15-42Ure2, respectively; the corresponding values for 90Ure2 were 2-3A lower. SAXS suggests residual structure in the 4M GdmCl denatured state and chemical cross-linking detects persistence of dimeric structure under these conditions. Hexamers consisting of globular subunits could be detected by SAXS at high protein concentration under partially denaturing conditions. The increased tendency of partially folded states to form small oligomers points to a mechanism for prion formation.  相似文献   

13.
Yeast prions are protein-based genetic elements that self-perpetuate changes in protein conformation and function. A protein-remodeling factor, Hsp104, controls the inheritance of several yeast prions, including those formed by Sup35 and Ure2. Perplexingly, deletion of Hsp104 eliminates Sup35 and Ure2 prions, whereas overexpression of Hsp104 purges cells of Sup35 prions, but not Ure2 prions. Here, we used pure components to dissect how Hsp104 regulates prion formation, growth, and division. For both Sup35 and Ure2, Hsp104 catalyzes de novo prion nucleation from soluble, native protein. Using a distinct mechanism, Hsp104 fragments both prions to generate new prion assembly surfaces. For Sup35, the fragmentation endpoint is an ensemble of noninfectious, amyloid-like aggregates and soluble protein that cannot replicate conformation. In vivid distinction, the endpoint of Ure2 fragmentation is short prion fibers with enhanced infectivity and self-replicating ability. These advances explain the distinct effects of Hsp104 on the inheritance of the two prions.  相似文献   

14.
As hamster scrapie cannot infect mice, due to sequence differences in their PrP proteins, we find “species barriers” to transmission of the [URE3] prion in Saccharomyces cerevisiae among Ure2 proteins of S. cerevisiae, paradoxus, bayanus, cariocanus, and mikatae on the basis of differences among their Ure2p prion domain sequences. The rapid variation of the N-terminal Ure2p prion domains results in protection against the detrimental effects of infection by a prion, just as the PrP residue 129 Met/Val polymorphism may have arisen to protect humans from the effects of cannibalism. Just as spread of bovine spongiform encephalopathy prion variant is less impaired by species barriers than is sheep scrapie, we find that some [URE3] prion variants are infectious to another yeast species while other variants (with the identical amino acid sequence) are not. The species barrier is thus prion variant dependent as in mammals. [URE3] prion variant characteristics are maintained even on passage through the Ure2p of another species. Ure2p of Saccharomyces castelli has an N-terminal Q/N-rich “prion domain” but does not form prions (in S. cerevisiae) and is not infected with [URE3] from Ure2p of other Saccharomyces. This implies that conservation of its prion domain is not for the purpose of forming prions. Indeed the Ure2p prion domain has been shown to be important, though not essential, for the nitrogen catabolism regulatory role of the protein.  相似文献   

15.
[URE3] is a prion (infectious protein) of the Saccharomyces cerevisiae Ure2p, a regulator of nitrogen catabolism. We show that wild S. paradoxus can be infected with a [URE3] prion, supporting the use of S. cerevisiae as a prion test bed. We find that the Ure2p of Candida albicans and C. glabrata also regulate nitrogen catabolism. Conservation of amino acid sequence within the prion domain of Ure2p has been proposed as evidence that the [URE3] prion helps its host. We show that the C. albicans Ure2p, which does not conserve this sequence, can nonetheless form a [URE3] prion in S. cerevisiae, but the C. glabrata Ure2p, which does have the conserved sequence, cannot form [URE3] as judged by its performance in S. cerevisiae. These results suggest that the sequence is not conserved to preserve prion forming ability.  相似文献   

16.
Two Prion-Inducing Regions of Ure2p Are Nonoverlapping   总被引:1,自引:0,他引:1       下载免费PDF全文
Ure2p of Saccharomyces cerevisiae normally functions in blocking utilization of a poor nitrogen source when a good nitrogen source is available. The non-Mendelian genetic element [URE3] is a prion (infectious protein) form of Ure2p, so that overexpression of Ure2p induces the de novo appearance of infectious [URE3]. Earlier studies defined a prion domain comprising Ure2p residues 1 to 64 and a nitrogen regulation domain included in residues 66 to 354. We find that deletion of individual runs of asparagine within the prion domain reduce prion-inducing activity. Although residues 1 to 64 are sufficient for prion induction, the fragment from residues 1 to 80 is a more efficient inducer of [URE3]. In-frame deletion of a region around residue 224 does not affect nitrogen regulation but does eliminate prion induction by the remainder of Ure2p. Larger deletions removing the region around residue 224 and more of the C-terminal part of Ure2p restore prion-inducing ability. A fragment of Ure2p lacking the original prion domain does not induce [URE3], but surprisingly, further deletion of residues 151 to 157 and 348 to 354 leaves a fragment that can do so. The region from 66 to 80 and the region around residue 224 are both necessary for this second prion-inducing activity. Thus, each of two nonoverlapping parts of Ure2p is sufficient to induce the appearance of the [URE3] prion.  相似文献   

17.
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].  相似文献   

18.
Ure2p is the precursor protein of the Saccharomyces cerevisiae prion [URE3]. Ure2p shows homology to glutathione transferases but lacks typical glutathione transferase activity. A recent study found that deletion of the Ure2 gene causes increased sensitivity to heavy metal ions and oxidants, whereas prion strains show normal sensitivity. To demonstrate that protection against oxidant toxicity is an inherent property of native and prion Ure2p requires biochemical characterization of the purified protein. Here we use steady-state kinetic methods to characterize the multisubstrate peroxidase activity of Ure2p using GSH with cumene hydroperoxide, hydrogen peroxide, or tert-butyl hydroperoxide as substrates. Glutathione-dependent peroxidase activity was proportional to the Ure2p concentration and showed optima at pH 8 and 40 degrees C. Michaelis-Menten behavior with convergent straight lines in double reciprocal plots was observed. This excludes a ping-pong mechanism and implies either a rapid-equilibrium random or a steady-state ordered sequential mechanism for Ure2p, consistent with its classification as a glutathione transferase. The mutant 90Ure2, which lacks the unstructured N-terminal prion domain, showed kinetic parameters identical to wild type. Fibrillar aggregates showed the same level of activity as native protein. Demonstration of peroxidase activity for Ure2 represents important progress in elucidation of its role in vivo. Further, establishment of an in vitro activity assay provides a valuable tool for the study of structure-function relationships of the Ure2 protein as both a prion and an enzyme.  相似文献   

19.
L Bousset  H Belrhali  R Melki  S Morera 《Biochemistry》2001,40(45):13564-13573
The [URE3] phenotype in yeast Saccharomyces cerevisiae is due to an altered prion form of Ure2p, a protein involved in nitrogen catabolism. To understand possible conformational changes at the origin of prion propagation, we previously solved the crystal structure of the Ure2p functional region [Bousset et al. (2001) Structure 9, 39-46]. We showed the protein to have a fold similar to that of the beta class of glutathione S-transferases (GSTs). Here we report crystal structures of the Ure2p functional region (extending from residues 95-354) in complex with glutathione (GSH), the substrate of all GSTs, and two widely used GST inhibitors, namely, S-hexylglutathione and S-p-nitrobenzylglutathione. In a manner similar to what is observed in many GSTs, ligand binding is not accompanied by a significant change in the conformation of the protein. We identify one GSH and one hydrophobic electrophile binding site per monomer as observed in all other GSTs. The sulfur group of GSH, that conjugates electrophiles, is located near the amide group of Asn124, allowing a hydrogen bond to be formed. Biochemical data indicate that GSH binds to Ure2p with high affinity. Its binding affects Ure2p oligomerization but has no effect on the assembly of the protein into amyloid fibrils. Despite results indicating that Ure2p lacks GST activity, we propose that Ure2p is a member of the GST superfamily that may describe a novel GST class. Our data bring new insights into the function of the Ure2p active region.  相似文献   

20.
The non-Mendelian phenotype [URE3] is due to a transmissible conformational change of the protein Ure2. The infectious protein form of Ure2p has lost its function and gained the capacity to transform the active form of the protein into an inactive form. The molecular basis of this conversion process is unknown. There are however indications that the conformational changes at the origin of the propagation of the inactive form of Ure2p in yeast cells are similar to those at the origin of the transition of PrPC into the scrapie-associated PrPSc form of the protein. To better understand the nature of the conformational changes at the origin of prion propagation, we have purified, characterized biochemically, examined the assembly properties and solved the crystal structure of Ure2p. Our data are presented below and a number of conclusions dealing with the molecular basis of the conversion of soluble Ure2p into its amyloid-forming state are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号