首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of reduction of phototrophic bacterial flavocytochromes c by exogenous flavin semiquinones and fully reduced flavins generated by laser flash photolysis have been studied. The mechanisms of reduction of Chromatium and Chlorobium flavocytochromes c are more similar to one another than previously thought. Neither protein is very reactive with neutral flavin semiquinones (k less than 10(7) M-1 s-1), and the reactions with fully reduced flavins are slower than expected on the basis of comparison with other electron-transfer proteins of similar redox potentials. Deazaflavin radical is reactive with the flavocytochromes c by virtue of its low redox potential, but this reaction is also slower than expected on the basis of comparison with other electron-transfer proteins. These experiments indicate that the active site for reduction of flavocytochrome c is relatively buried and probably inaccessible to solvent. Fully reduced FMN does not show an ionic strength effect in its reaction with flavocytochrome c, which demonstrates that the active site is uncharged. Sulfite, which forms an adduct with protein-bound FAD, partially blocks heme reduction. This shows that heme is reduced via the FAD. The rate constant for intramolecular electron transfer between FAD and heme must be on the order of 10(4) s-1 or larger.  相似文献   

2.
Phot proteins (phototropins and homologs) are blue-light photoreceptors that control mechanical processes like phototropism, chloroplast relocation, or guard-cell opening in plants. Phot receptors consist of two flavin mononucleotide (FMN)-binding light, oxygen, or voltage (LOV) domains and a C-terminal serine/threonine kinase domain. We determined crystal structures of the LOV1 domain of Phot1 from the green alga Chlamydomonas reinhardtii in the dark and illuminated state to 1.9 A and 2.8 A resolution, respectively. The structure resembles that of LOV2 from Adiantum (Crosson, S. and K. Moffat. 2001. PROC: Natl. Acad. Sci. USA. 98:2995-3000). In the resting dark state of LOV1, the reactive Cys-57 is present in two conformations. Blue-light absorption causes formation of a proposed active signaling state that is characterized by a covalent bond between the flavin C4a and the thiol of Cys-57. There are differences around the FMN chromophore but no large overall conformational changes. Quantum chemical calculations based on the crystal structures revealed the electronic distribution in the active site during the photocycle. The results suggest trajectories for electrons, protons, and the active site cysteine and offer an interpretation of the reaction mechanism.  相似文献   

3.
The reactivity of a variant of the blue copper protein, azurin from Pseudomonas aeruginosa, was investigated with laser flash photolysis and compared with the reactivity of the wild-type (WT) protein. The variant was obtained by changing the Cu ligating His117 for a glycine. The mutation creates a gap in the ligand shell of the Cu that can be filled with external ligands or water molecules. The crystal structure of the H117G variant is reported. It shows that the immediate surrounding of the Cu site in the variant exhibits less rigidity than in the WT protein and that the loop containing the Cu ligands Cys112, His117 and Met121 in the WT protein has gained flexibility in the H117G variant. Flash photolysis experiments were performed with 5-deazariboflavin and 8α-imidazolyl-(N-propylyl)-amino riboflavin as electron donors to probe the reactivity of WT and H117G azurin, and of H117G azurin for which the gap in the Cu co-ordination shell was filled with imidazole. 8α-Imidazolyl-(N-propylyl)-amino riboflavin appears one to two orders less efficient as a photo-flash reductant than 5-deazariboflavin. The reactivity of the H117G variant in the absence of external ligands appears to be 2.5-fold lower than the WT reactivity (second-order rate constants of 51 ± 2 × 10(7) m(-1) ·s(-1) versus 21 ± 1 × 10(7) m(-1) ·s(-1) ), whereas the addition of imidazole restores reactivity to above the WT level (71 ± 4 × 10(7) m(-1) ·s(-1) ). The differences are discussed in terms of structural modifications and changes in reorganizational energy and electronic coupling. Database Structural data are available in the Protein Data Bank under the accession number 3N2J.  相似文献   

4.
The LOV1 domain of the blue light Phot1-receptor (phototropin homolog) from Chlamydomonas reinhardtii has been studied by vibrational spectroscopy. The FMN modes of the dark state of LOV1 were identified by preresonance Raman spectroscopy and assigned to molecular vibrations. By comparing the blue-light-induced FTIR difference spectrum with the preresonance Raman spectrum, most of the differences are due to FMN modes. Thus, we exclude large backbone changes of the protein that might occur during the phototransformation of the dark state LOV1-447 into the putative signaling state LOV1-390. Still, the presence of smaller amide difference bands cannot be excluded but may be masked by overlapping FMN modes. The band at 2567 cm(-1) is assigned to the S-H stretching vibration of C57, the residue that forms the transient thio-adduct with the chromophore FMN. The occurrence of this band is evidence that C57 is protonated in the dark state of LOV1. This result challenges conclusions from the homologous LOV2 domain from oat that the thiolate of the corresponding cysteine is the reactive species.  相似文献   

5.
Cryptochromes are a class of flavoprotein blue-light signaling receptors found in plants, animals, and humans that control plant development and the entrainment of circadian rhythms. In plant cryptochromes, light activation is proposed to result from photoreduction of a protein-bound flavin chromophore through intramolecular electron transfer. However, although similar in structure to plant cryptochromes, the light-response mechanism of animal cryptochromes remains entirely unknown. To complicate matters further, there is currently a debate on whether mammalian cryptochromes respond to light at all or are instead activated by non-light-dependent mechanisms. To resolve these questions, we have expressed both human and Drosophila cryptochrome proteins to high levels in living Sf21 insect cells using a baculovirus-derived expression system. Intact cells are irradiated with blue light, and the resulting cryptochrome photoconversion is monitored by fluorescence and electron paramagnetic resonance spectroscopic techniques. We demonstrate that light induces a change in the redox state of flavin bound to the receptor in both human and Drosophila cryptochromes. Photoreduction from oxidized flavin and subsequent accumulation of a semiquinone intermediate signaling state occurs by a conserved mechanism that has been previously identified for plant cryptochromes. These results provide the first evidence of how animal-type cryptochromes are activated by light in living cells. Furthermore, human cryptochrome is also shown to undergo this light response. Therefore, human cryptochromes in exposed peripheral and/or visual tissues may have novel light-sensing roles that remain to be elucidated.  相似文献   

6.
The highly complex G + C-rich satellite DNA of the Bermuda land crab Gecarcinus lateralis has been studied by denaturation mapping. Following digestion of the satellite with EndoR.Eco RI, the major 2.07-kilobase pair (kbp) basic repeating unit and a minor 4.14-kbp fragment were exposed to 254 nm light in the presence of silver ions, conditions which resulted in essentially irreversible denaturation of regions rich in adjacent pyrimidines by the formation of pyrimidine dimers. The positions and sizes of the denatured regions were determined in electron micrographs of partially denatured 2.07-kbp and 4.14-kbp fragments spread in the presence of formamide. After 15 min exposure to UV, 90% of the 2.07-kbp fragments had a denaturation bubble averaging 0.17 kbp centered around one-third (0.64 kbp) the total length; 20% exhibited another in the region from 1.8 kbp to 2.07 kbp. Similarly, about 90% of the 4.14-kbp fragments had denatured regions centered at 0.64 kbp and 2.75 kbp and 20% of the fragments had denaturation bubbles in regions centered at 1.92 kbp and 3.9 kbp. The positions of the denaturation bubbles in the 4.14-kbp fragments support restriction enzyme mapping evidence that it is a dimer of the 2.07-kbp fragment arranged head to tail. Sequencing data show that the predominant sequence of a 0.29-kbp region centered around 0.64 kbp in the basic repeat unit is 49% A + T and that 42% of the bases are adjacent TTs and CTs capable of dimerization under the conditions used.  相似文献   

7.
Bittl R  Kay CW  Weber S  Hegemann P 《Biochemistry》2003,42(28):8506-8512
In the flavin mononucleotide-binding LOV1 domain of the Phot1-receptor from Chlamydomonas reinhardtii the photoreactive cysteine C57 has been replaced by methionine. Photoexcitation of this C57M mutant yields a metastable photoproduct (C57M-415) that thermally decomposes into a stable paramagnetic species (C57M-675) with extremely red-shifted absorption in the visible range. In this contribution, we describe the characterization of this radical by multi-frequency electron paramagnetic resonance and electron-nuclear double resonance. The main features of the spectra identify the paramagnetic species as a flavin neutral radical. However, detailed analysis shows that the isoalloxazine moiety of the flavin is alkyl substituted at N(5), rather than protonated as is usually the case. The implication of these observations on the likely mechanism of photoproduct generation in wild-type LOV domains is discussed.  相似文献   

8.
The cross-peaks of 1H-NOESY spectra at different time delays are compared to a mode-coupling diffusion (MCD) calculation, including the evaluation of the full 1H relaxation matrix, in the case of a 23 nucleotide fragment of the stem-loop SL1 domain of HIV-1Lai genomic RNA mutated in a single position. The MCD theory gives significant agreement with 1H relaxation experiments enabling a thorough understanding of the differential local dynamics along the sequence and particularly of the dynamics of nucleotides in the stem and in the loop. The differential dynamics of this hairpin structure is important in directing the dimerization of the retroviral genome, a fundamental step in the infectious process. The demonstration of a reliable use of time dependent NOE cross-peaks, largely available from NMR solution structure determination, coupled to MCD analysis, to probe the local dynamics of biological macromolecules, is a result of general interest of this paper.  相似文献   

9.
The “Phot” protein family comprises blue-light photoreceptors that consist of two flavin mononucleotide (FMN)-binding LOV (light, oxygen, and voltage) domains and a serine/threonine kinase domain. We have investigated the LOV1 domain of Phot1 from Chlamydomonas reinhardtii by time-resolved absorption spectroscopy. Photoexcitation of the dark form, LOV1-447, causes transient bleaching and formation of two spectrally similar red-shifted intermediates that are both assigned to triplet states of the FMN. The triplet states decay with time constants of 800 ns and 4 μs with an efficiency of >90% into a blue-shifted intermediate, LOV1-390, that is attributed to a thiol adduct of cysteine 57 to FMN C(4a). LOV1-390 reverts to the dark form in hundreds of seconds, the time constant being dependent on pH and salt concentration. In the mutant C57S, where the thiol adduct cannot be formed, the triplet state displays an oxygen-dependent decay directly to the dark form. We present here a spectroscopic characterization of an algal sensory photoreceptor in general and of a LOV1 domain photocycle in particular. The results are discussed with respect to the behavior of the homologous LOV2 domain from oat.  相似文献   

10.
D O Morgan  L Ellis  W J Rutter  R A Roth 《Biochemistry》1987,26(11):2959-2963
Insulin receptor down-regulation was studied in various Chinese hamster ovary (CHO) cell lines expressing transfected human insulin receptor cDNAs. In addition to a cell line expressing the normal receptor (CHO.T line), three lines expressing mutated receptors were studied: the CHO.T-t line, which expresses a receptor with a degraded cytoplasmic domain due to the removal of the C-terminal 112 amino acids, and the CHO.YF1 and CHO.YF3 lines, in which important autophosphorylation sites of the receptor kinase (tyrosines-1162 and -1163) have been replaced by phenylalanine. A monoclonal anti-receptor antibody, but not insulin itself, was found to down-regulate cell surface receptor levels in all four cell lines by 60-80% after 18-h treatment at 37 degrees C. Down-regulation of the CHO.T and CHO.T-t receptors occurred at similar antibody concentrations and with a similar time course, although the maximum level of CHO.T-t down-regulation (60%) was generally lower than the level of CHO.T down-regulation (80%). Pulse-chase labeling of these two cell types with [35S]methionine revealed that antibody treatment of both CHO.T and CHO.T-t cells resulted in a similar increase in the rate of degradation of mature receptor subunits. These results indicate that antibody-induced down-regulation of the insulin receptor in these cells can occur in the absence of various autophosphorylation sites of the receptor and that the mechanism of antibody-induced down-regulation is different from that for insulin.  相似文献   

11.
Cellobiose dehydrogenase (CDH; EC 1.1.99.18) is an extracellular glycosylated protein composed of two distinct domains, a C-terminal catalytic flavin domain and an N-terminal cytochrome-b-type heme domain, which transfers electrons from the flavin domain to external electron acceptors. The soluble flavin domain of the Phanerochaete chrysosporium CDH was successfully expressed in Escherichia coli. The enzyme showed dye-mediated CDH activity higher than that of the complete CDH, composed of flavin domain and heme domain, prepared using Pichia pastoris as the host microorganism. The ability to conveniently express the recombinant CDH flavin domain in E. coli provides great opportunities for the molecular engineering of the catalytic properties of CDH.  相似文献   

12.
In order to compare the oxidation and reduction reactions of c-type cytochromes (cytochrome c552 from the green alga Monoraphidium braunii and horse heart cytochrome c) by different flavins (lumiflavin, riboflavin and FMN), laser flash photolysis studies have been carried out using either reduced or oxidized protein in the presence of triplet or semiquinone flavin, respectively. The reaction kinetics clearly demonstrate that cytochrome oxidation is mediated by the flavin triplet state. The rate constants for reduction are 20-100 times smaller than those for oxidation, indicating that the triplet state is a more effective reactant than is the semiquinone. This is attributed to its excited state nature and correspondingly high free energy content. The rate constants for both the reduction and oxidation of cytochrome c552 by riboflavin are significantly smaller than those obtained with lumiflavin, suggesting a steric interference of the ribityl side chain in the flavin-cytochrome interaction. The comparison between oxidation and reduction indicates that the former process is less affected by steric hindrance than the latter. Both reduction and oxidation of cytochrome c552 by FMN show an ionic strength dependence with the same sign, consistent with a negatively charged reaction site on the cytochrome. The magnitude of the electrostatic effect is slightly smaller for reduction than it is for oxidation. A pattern quite similar to that observed with cytochrome c552 was obtained when parallel experiments were carried out with horse cytochrome c, although differences were observed in the steric and electrostatic properties of the electron transfer site(s) in these two cytochromes. These results suggest that the same or closely adjacent sites on the proteins are involved in the oxidation and reduction reactions. The biochemical implications of this are discussed.  相似文献   

13.
Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.  相似文献   

14.
Pyrin protein is the product of the MEFV gene, mutations in which cause manifestation of familial Mediterranean fever (FMF). Functions of pyrin are not completely clear. The secondary structure of the pyrin is represented with four domains and two motifs. Mutations p.M680I, p.M694V, p.M694I, p.K695R, p.V726A, and p.A744S, which are located in the B30.2 domain of pyrin protein, are responsible for manifestation of the most common and severe forms of FMF. All the domains and the motifs of pyrin, are directly or indirectly, involved in the protein–protein interaction with proteins of apoptosis and regulate the cascade of inflammatory reactions, which is impaired due to pyrin mutations. It is well known, that malfunction of the pyrin‐caspase‐1 complex is the main reason of inflammation during FMF. Complete tertiary structure of pyrin and the effects of mutations in it are experimentally not studied yet. The aim of this study was to identify possible effects of the abovementioned mutations in the B30.2 domain tertiary structure and to determine their potential consequences in formation of the B30.2‐caspase‐1 complex. Using in silico methods, it was found, that these mutations led to structural rearrangements in B30.2 domain tertiary structure, causing shifts of binding sites and altering the interaction energy between B30.2 and caspase‐1.  相似文献   

15.
16.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

17.
BACKGROUND: Tight skin mice (TSK) bear a mutated Fibrillin-1 (Fbn-1) gene. Genetic studies show that the TSK mutation is closely associated with the Fbn-1 locus (0-0.7 cM). A previous study showed two recombinants between the Fbn-1 locus and the TSK mutation. TSK mutation and mutated Fbn-1 gene cosegregate in F1 mice. MATERIALS AND METHODS: To elucidate the role of the mutated Fbn-1 gene in occurrence of TSK syndrome, we generated transgenic (Tg) mice expressing mutated Fbn-1 gene. In another set of experiments, we injected normal mice after birth with a plasmid bearing mutated Fbn-1 gene (pdFbn-1). RESULTS: Our results demonstrate that the pdFbn-1 Tg mice developed permanent cutaneous hyperplasia that was permanent. In mice injected as newborns with a plasmid bearing the sense pdFbn-1 gene, cutaneous hyperplasia was transient. In contrast to TSK mice, neither Tg nor mice injected with plasmid developed lung emphysema. The pdFbn-1 Tg and TSK mice spontaneously produced anti-topoisomerase I and anti-Fbn- antibodies, as do humans afflicted by scleroderma; whereas, those injected with a plasmid containing the pdFbn-1 gene produced only anti-Fbn-1 autoantibodies. CONCLUSIONS: The results suggest that, although cutaneous hyperplasia is due to mutated Fbn-1 gene, the TSK syndrome may be multifactorial.  相似文献   

18.
19.
Sato Y  Nabeno M  Iwata T  Tokutomi S  Sakurai M  Kandori H 《Biochemistry》2007,46(36):10258-10265
The primary photochemistry of the blue-light sensor protein, phototropin, is adduct formation between the C4a atom of the flavin mononucleotide (FMN) chromophore and a nearby, reactive cysteine (Cys966), following decay of the triplet excited state of FMN. The distance between the C4a position of FMN and the sulfur atom of Cys966 is 4.2 A in the LOV2 domain of Adiantum neochrome 1 (neo1-LOV2), a fusion protein of phototropin containing the phytochrome chromophoric domain. We previously reported the presence of an unreactive fraction in neo1-LOV2 at low temperatures, which presumably originated from the heterogeneous environment of Cys966 [Iwata, T., Nozaki, D., Tokutomi, S., Kagawa, T., Wada, M., and Kandori, H. (2003) Biochemistry 42, 8183-8191]. The present study showed that (i) 28% forms an adduct at 77 K (state I), (ii) 50% forms an adduct at 150 K but not at 77 K (state II), and (iii) 22% does not form an adduct at 150 K (state III). By Fourier transform infrared (FTIR) spectroscopy, we observed the S-H stretching frequencies at 2570 and 2562 cm-1 for state I and at 2563 cm-1 for state II, suggesting that the microenvironment of the S-H group of Cys966 determines the reactivity at low temperatures. Adduct formation is more efficient for state I than for states II and III. Molecular dynamics simulation strongly suggests that the observed multiple structures originate from the isomeric forms of Cys966. We thus concluded that there are multiple local structures of FMN and cysteine in neo1-LOV2, each of which is thermally converted by protein fluctuation at physiological temperatures.  相似文献   

20.
Y F Li  P F Heelis  A Sancar 《Biochemistry》1991,30(25):6322-6329
DNA photolyases repair cyclobutadipyrimidines (Pyr()Pyr) in DNA by photoinduced electron transfer. The enzyme isolated from Escherichia coli contains methenyltetrahydrofolate (MTHF), which functions as photoantenna, and FADH2, which is the redox-active cofactor. During purification, FADH2 is oxidized to the blue neutral radical form, FADH., which has greatly diminished activity. Previous nanosecond flash photolysis studies [Heelis, P.F., Okamura, T., & Sancar, A. (1990) Biochemistry 29, 5694-5698] indicated that excitation of FADH. either directly by absorbing a photon or indirectly by electronic energy transfer from MTHF excited singlet state yielded an FADH. quartet which abstracted a hydrogen atom from a nearby tryptophan to generate the catalytically competent FADH2 from of the enzyme. Using site-directed mutagenesis, we replaced all 15 photolyase tryptophan residues by phenylalanine, individually, in order to identify the internal hydrogen atom donor responsible for photoreduction. We found that W306F mutation abolished photoreduction of FADH. without affecting the excited-state properties of FADH. or the substrate binding (KA approximately 10(9) M-1) of the enzyme. The specificity constant (kcat/km) was approximately 0 for the mutant enzyme in the absence of reducing agents in the reaction mixture, indicating that photoreduction of FADH. is an essential step for photorepair by photolyase in vitro. Chemical reduction of FADH. of the mutant enzyme restored the specificity constant to the wild-type level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号