首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ribosomal protein L11 has two domains: the C-terminal domain (L11-C76) binds rRNA, whereas the N-terminal domain (L11-NTD) may variously interact with elongation factor G, the antibiotic thiostrepton, and rRNA. To begin to quantitate these interactions, L11 from Bacillus stearothermophilus has been overexpressed and its properties compared with those of L11-C76 alone in a fluorescence assay for protein-rRNA binding. The assay relies on 2'-amino-butyryl-pyrene-uridine incorporated in a 58-nucleotide rRNA fragment, which gives approximately 15-fold enhancement when L11 or L11-C76 is bound. Although the pyrene tag weakens protein binding, unbiased protein-RNA association constants were obtained in competition experiments with untagged RNA. It was found that (i) intact B. stearothermophilus L11 binds rRNA with K approximately 1.2 x 10(9) m(-1) in buffers with 0.2 m KCl, about 100-fold tighter than Escherichia coli L11; (ii) the N-terminal domain makes a small, salt-dependent contribution to the overall L11-RNA binding affinity (approximately 8-fold enhancement at 0.2 m KCl), (iii) L11 stimulates thiostrepton binding by 2.3 +/- 0.6 x 10(3)-fold, predicting an overall thiostrepton affinity for the ribosome of approximately 10(9) m(-1), and (iv) the yeast homolog of L11 shows no stimulation of thiostrepton binding. The latter observation resolves the question of why eukaryotes are insensitive to the antibiotic. These measurements also show that it is plausible for thiostrepton to compete directly with EF-G.GDP for binding to the L11-RNA complex, and provide a quantitative basis for further studies of L11 function and thiostrepton mechanism.  相似文献   

2.
M Lu  D E Draper 《Nucleic acids research》1995,23(17):3426-3433
Ribosomal protein L11 and an antibiotic, thiostrepton, bind to the same highly conserved region of large subunit ribosomal RNA and stabilize a set of NH4(+)-dependent tertiary interactions within the domain. In vitro selection from partially randomized pools of RNA sequences has been used to ask what aspects of RNA structure are recognized by the ligands. L11-selected RNAs showed little sequence variation over the entire 70 nucleotide randomized region, while thiostrepton required a slightly smaller 58 nucleotide domain. All the selected mutations preserved or stabilized the known secondary and tertiary structure of the RNA. L11-selected RNAs from a pool mutagenized only around a junction structure yielded a very different consensus sequence, in which the RNA tertiary structure was substantially destabilized and L11 binding was no longer dependent on NH4+. We propose that L11 can bind the RNA in two different 'modes', depending on the presence or absence of the NH4(+)-dependent tertiary structure, while thiostrepton can only recognize the RNA tertiary structure. The different RNA recognition mechanisms for the two ligands may be relevant to their different effects on protein synthesis.  相似文献   

3.
The antibiotic thiostrepton, a thiazole-containing peptide, inhibits translation and ribosomal GTPase activity by binding directly to a limited and highly conserved region of the large subunit ribosomal RNA termed the GTPase center. We have previously used a filter binding assay to examine the binding of ribosomal protein L11 to a set of ribosomal RNA fragments encompassing the Escherichia coli GTPase center sequence. We show here that thiostrepton binding to the same RNA fragments can also be detected in a filter binding assay. Binding is relatively independent of monovalent salt concentration and temperature but requires a minimum Mg2+ concentration of about 0.5 mM. To help determine the RNA features recognized by L11 and thiostrepton, a set of over 40 RNA sequence variants was prepared which, taken together, change every nucleotide within the 1051 to 1108 recognition domain while preserving the known secondary structure of the RNA. Binding constants for L11 and thiostrepton interaction with these RNAs were measured. Only a small number of sequence variants had more than fivefold effects on L11 binding affinities, and most of these were clustered around a junction of helical segments. These same mutants had similar effects on thiostrepton binding, but more than half of the other sequence changes substantially reduced thiostrepton binding. On the basis of these data and chemical modification studies of this RNA domain in the literature, we propose that L11 makes few, if any, contacts with RNA bases, but recognizes the three-dimensional conformation of the RNA backbone. We also argue from the data that thiostrepton is probably sensitive to small changes in RNA conformation. The results are discussed in terms of a model in which conformational flexibility of the GTPase center RNA is functionally important during the ribosome elongation cycle.  相似文献   

4.
Ribosomal protein L11 and the L11 binding region of ribosomal RNA constitute an important domain involved in active functions of the ribosome during translation. We studied the effects of L11 knock-out and truncation mutations on the structure of the rRNA in this region and on its interactions with a translation elongation factor and the antibiotic thiostrepton. The results indicated that the structure of the L11-binding rRNA becomes conformationally flexible when ribosomes lack the entire L11 protein, but not when the C-terminal domain is present on ribosomes. Probing wild type and mutant ribosomes in the presence of the antibiotic thiostrepton and elongation factor-G (EF-G) rigorously localized the binding cleft of thiostrepton and suggested a role for the rRNA in the L11-binding domain in modulating factor binding. Our results also provide evidence that the structure of the rRNA stabilized by the C-terminal domain of L11 is necessary to stabilize EF-G binding in the post-translocation state, and thiostrepton may modulate this structure in a manner that interferes with the ribosome-EF-G interaction. The implications for recent models of thiostrepton activity and factor interactions are discussed.  相似文献   

5.
Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the ‘GTPase center’ of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximity assays designed to look at the binding of the L11 C-terminal RNA-binding domain to a 23S ribosomal RNA (rRNA) fragment, as well as the ability of thiostrepton to induce that binding, were used to demonstrate the role of Mg2+, L11 and thiostrepton in the formation and maintenance of the rRNA fragment tertiary structure. Experiments using these assays with both an Escherichia coli rRNA fragment and a thermostable variant of that RNA show that Mg2+, L11 and thiostrepton all induce the RNA to fold to an essentially identical tertiary structure.  相似文献   

6.
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11.  相似文献   

7.
8.
Upon digestion of the complex formed from the 23-S ribosomal RNA and the 50-S ribosomal protein L24 of Escherichia coli, two fragments resistant to ribonuclease were recovered; these fragments contained RNA sections belonging to the 480 nucleotides at the 5' end of 23-S RNA. By determining the sequence of 70% of this latter region we were able to localise the sections which, in the presence of the protein, are resistant to ribonuclease. Our results suggest that the region encompassing the 480 nucleotides starting at the 9th nucleotide from the 5' end of 23-S RNA has a compact tertiary structure, which is stabilised by protein L24.  相似文献   

9.
Photo-sensitive peptidyl-tRNA's were used to scan the environment of the peptidyl-transferase center of the ribosome. The specificity of the previously described labeling in the 18-S fragment of 23-S rRNA by Boc-Phe(N3)-Phe-tRNA (4-azido-N-t-butoxycarbonyl-phenylalanyl-phenylalanyl-tRNA) was demonstrated by the ability of the covalently anchored molecule to serve as donor substrate in peptide bond formation. Labeling patterns were also obtained with Boc-Phe(N3)-Phe-Phe-tRNA bound at the acceptor site and with Boc-Phe(N3)-(Gly)n-Phe-tRNA (n = 2,4). The results indicate that subsequences within the 18-S fragment of 23-S rRNA are located close to the acceptor site as well as along the path where the peptide moiety adheres to the ribosome. Identification of the labeled sequences is expected to shed light on the spatial arrangement as well as functional role of rRNA in the peptidyl transferase center.  相似文献   

10.
Iben JR  Draper DE 《Biochemistry》2008,47(9):2721-2731
Large ribosomal subunit proteins L10 and L12 form a pentameric protein complex, L10(L12) 4, that is intimately involved in the ribosome elongation cycle. Its contacts with rRNA or other ribosomal proteins have been only partially resolved by crystallography. In Escherichia coli, L10 and L12 are encoded from a single operon for which L10(L12) 4 is a translational repressor that recognizes a secondary structure in the mRNA leader. In this study, L10(L12) 4 was expressed from the moderate thermophile Bacillus stearothermophilus to quantitatively compare strategies for binding of the complex to mRNA and ribosome targets. The minimal mRNA recognition structure is widely distributed among bacteria and has the potential to form a kink-turn structure similar to one identified in the rRNA as part of the L10(L12) 4 binding site. Mutations in equivalent positions between the two sequences have similar effects on L10(L12) 4-RNA binding affinity and identify the kink-turn motif and a loop AA sequence as important recognition elements. In contrast to the larger rRNA structure, the mRNA apparently positions the kink-turn motif and loop for protein recognition without the benefit of Mg (2+)-dependent tertiary structure. The mRNA and rRNA fragments bind L10(L12) 4 with similar affinity ( approximately 10 (8) M (-1)), but fluorescence binding studies show that a nearby protein in the ribosome, L11, enhances L10(L12) 4 binding approximately 100-fold. Thus, mRNA and ribosome targets use similar RNA features, held in different structural contexts, to recognize L10(L12) 4, and the ribosome ensures the saturation of its L10(L12) 4 binding site by means of an additional protein-protein interaction.  相似文献   

11.
Ribosomal protein L9 consists of two globular alpha/beta domains separated by a nine-turn alpha-helix. We examined the rRNA environment of L9 by chemical footprinting and directed hydroxyl radical probing. We reconstituted L9, or individual domains of L9, with L9-deficient 50 S subunits, or with deproteinized 23 S rRNA. A footprint was identified in domain V of 23 S rRNA that was mainly attributable to N-domain binding. Fe(II) was tethered to L9 via cysteine residues introduced at positions along the alpha-helix and in the C-domain, and derivatized proteins were reconstituted with L9-deficient subunits. Directed hydroxyl radical probing targeted regions of domains I, III, IV, and V of 23 S rRNA, reinforcing the view that 50 S subunit architecture is typified by interwoven rRNA domains. There was a striking correlation between the cleavage patterns from the Fe(II) probes attached to the alpha-helix and their predicted orientations, constraining both the position and orientation of L9, as well as the arrangement of specific elements of 23 S rRNA, in the 50 S subunit.  相似文献   

12.
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11.  相似文献   

13.
14.
Ribosomal protein L11 of Escherichia coli was bound to 23 S rRNA and the resultant complex was digested with ribonuclease T1. A single RNA fragment, protected by protein L11, was isolated from such digests and was shown to rebind specifically to protein L11. The nucleotide sequence of this RNA fragment was examined by two-dimensional fingerprinting of ribonuclease digests. It proved to be 61 residues long and the constituent oligonucleotides could be fitted perfectly between residues 1052 and 1112 of the nucleotide sequence of E. coli 23 S rRNA.  相似文献   

15.
30-S ribosomal subunits which have been reconstituted using heat-denatured 16-S rRNA can participate in the synthesis of lysosyme in vitro. Therefore all the information contributed by 16-S rRNA to the reconstitution process is carried in the primary sequence of this RNA. The specific protein-synthesizing activity of 30-S subunits reconstituted from 30-S subunit proteins and heat-denatured 16-S rRNA is about one third of that observed if unheated 16-S rRNA is used and is comparable to the activity of 30-S particles isolated after dissociation of 70-S ribosomes in the presence of 0.1 mM Mg2+.  相似文献   

16.
17.
The interaction between ribosomal protein L11 from Escherichia coli and in vitro synthesized RNA containing its binding site from 23S rRNA was characterized by identifying nucleotides that interfered with complex formation when chemically modified by diethylpyrocarbonate or hydrazine. Chemically modified RNA was incubated with L11 under conditions appropriate for specific binding of L11 and the resulting protein-RNA complex was separated from unbound RNA on Mg(2+)-containing polyacrylamide gels. The ability to isolate L11 complexes on such gels was affected by the extent of modification by either reagent. Protein-bound and free RNAs were recovered and treated with aniline to identify their content of modified bases. Exclusion of RNA containing chemically altered bases from L11-associated material occurred for 29 modified nucleotides, located throughout the region corresponding to residues 1055-1105 in 23S rRNA. Ten bases within this region did not reproducibly inhibit binding when modified. Multiple bands of RNA were consistently observed on the nondenaturing gels, suggesting that significant intermolecular RNA-RNA interactions had occurred.  相似文献   

18.
Eukaryotic ribosomal stalk protein L12 and its bacterial orthologue L11 play a central role on ribosomal conformational changes during translocation. Deletion of the two genes encoding L12 in Saccharomyces cerevisiae resulted in a very slow-growth phenotype. Gene RPL12B, but not the RPL12A, cloned in centromeric plasmids fully restored control protein level and the growth rate when expressed in a L12-deprived strain. The same strain has been transformed to express Escherichia coli protein EcL11 under the control of yeast RPL12B promoter. The bacterial protein has been found in similar amounts in washed ribosomes from the transformed yeast strain and from control E. coli cells, however, EcL11 was unable to restore the defective acidic protein stalk composition caused by the absence of ScL12 in the yeast ribosome. Protein EcL11 induced a 10% increase in L12-defective cell growth rate, although the in vitro polymerizing capacity of the EcL11-containing ribosomes is restored in a higher proportion, and, moreover, the particles became partially sensitive to the prokaryotic specific antibiotic thiostrepton. Molecular dynamic simulations using modelled complexes support the correct assembly of bacterial L11 into the yeast ribosome and confirm its direct implication of its CTD in the binding of thiostrepton to ribosomes.  相似文献   

19.
The primary structure of rat ribosomal protein L23.   总被引:1,自引:0,他引:1  
The amino acid sequence of the rat 60S ribosomal subunit protein L23 was deduced from the sequence of nucleotides in two recombinant cDNAs. Ribosomal protein L23 has 140 amino acids and a molecular weight of 14,856. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 7-9 copies of the L23 gene. The mRNA for the protein is about 600 nucleotides in length. Rat L23 is homologous to Saccharomyces cerevisiae L17a and related to Escherichia coli L14 and other members of the prokaryotic L14 family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号