首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
二磷酸核酮糖羧化酶/加氧酶装配研究进展   总被引:1,自引:0,他引:1  
本文对Rubis CO大、小亚基在叶绿体和大肠杆菌中的合成,装配,酶的体外重组以及亚基结合蛋白的性质和作用等进行了综述,并对这个领域的研究前景作了展望。  相似文献   

2.
研究了小麦(Triticum aestivum L. cv.Yangmai 158)叶片暗诱导衰老过程中1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco EC 4.1.1.39)的降解.发现在此期间Rubisco大亚基(LSU)发生裂解,产生50 kD的降解条带,同时在自然衰老过程中也检测到这一产物.初步实验结果表明LSU发生这步裂解时Rubisco全酶没有解离.另外,在粗酶液中当温度在30~35℃,pH 7.5时,这一步裂解反应能有效进行.  相似文献   

3.
报道了在光照和暗处培养下,不同的浓度的蔗水稻幼苗叶片GS及其同工酶、1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)的影响。无论是在光照或在暗处,蔗糖对GS活性均有抑制作用,尤其是在较高蔗糖下作用更为明显;虽然Rubisco及可溶性蛋白的水平在光照和暗处有显著的差别,但蔗糖对其未见明显影响。NativePAGE与活性染色表明,在光照下或在暗处,蔗糖对GS2的抑制蔗糖浓度升同而加强,但对GS1未有明显影响。这些结果提示,在水稻幼苗生长中,蔗糖不能象不光一样诱导叶水GS活性及其同工酶表达。  相似文献   

4.
本文提出三种证据证明烟草核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)的大亚基伸展在小亚基的外面,小亚基排列在大亚基中间的概念。证据是:1.固定化胰蛋白酶在一定条件下可水解RubisCO的大亚基但不水解小亚基,而天然胰蛋白酶水解大亚基,也水解小亚基。2.固定化抗小亚基IgG-Sepharose可与游离的小亚基相结合,但不能与全酶结合。3.低浓度尿素处理可使固定化的RubisCO-Sepharose上的小亚基解离下来,而大亚基仍结合在载体上,这说明RubisCO是通过定位在分子表面上的大亚基的ε-氨基与Sepharose共价偶联的。当RubisCO中的小亚基全部被解离后,大亚基之间的结合进一步增强,这时解离大亚基所需的尿素浓度要比小亚基存在时高。任何RubisCO的四级结构模型都应将小亚基置于大亚基中间受保护的位置,一部份小亚基可暴露于全酶分子表面。  相似文献   

5.
提出一个用变色酸-硫酸显色浊同时测定核酮糖-1,5-二磷酸(RuBP)羧化酶/加氧酶活性的方法:RuBP羧化酶/加氧酶与底物作用后,用碱性磷酸酯酶将其产物水解生成乙醇酸和甘油酸,然后与变色酸试剂在1:5的体积比下,沸水浴中显色反应90min,乙醇酸与变色酸反应生成红紫色化合物,甘油酸生成淡棕色化合物,分别在573nm,745nm各有一特征吸收峰。根据A_(573),A_(745)与乙醇酸和甘油酸浓度间的函数关系式,求出RuBP羧化酶/加氧酶活性。  相似文献   

6.
用~(35)S-Met在照光下与豌豆完整叶绿体保温,显示新合成的标记的RubisCO大亚基与结合蛋白形成一复合物,经ATP处理后解离为结合蛋白亚基,同时释放出的标记的RubisCO大亚基参与了RubisCO的装配。豌豆叶片提取液经热处理,硫酸铵分部,DEAE-Sepharose fast flow和Sephacryl S-300柱层析在ND-PAGE,SDS-PAGE上显示为一条带,估计纯度达90%以上,得率比以前报道的高12倍。纯化的结合蛋白表面巯基数经测定为12±1个,总巯基数为36±1个。远紫外CD光谱具有典型的α-螺旋结构的光谱特性,α-螺旋度为39%。此外,以纯化的豌豆结合蛋白制备了多克隆抗体。琼脂糖双扩散实验显示,结合蛋白的抗体与结合蛋白产生一条沉淀线,而与豌豆的RubisCO无沉淀反应,这表明所得到的抗体是高度专一的。  相似文献   

7.
研究了小麦(Triticum aestivum L.cv.Yangmai 158)叶片暗诱导衰老过程中1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco EC 4.1.1.39)的降解。发现在此期间Rubisco大亚基(LSU)发生裂解,产生50 kD的降解条带,同时在自然衰老过程中也检测到这一产物。初步实验结果表明LSU发生这步裂解时Rubisco全酶没有解离。另外,在粗酶液中当温度在30~35℃,pH7.5时,这一步裂解反应能有效进行。  相似文献   

8.
随着叶龄的增加,鸡蛋果Ru BP羧化酶/加氧酶的V_(max)(CO_2)值明显减小,K_m(O_2)值提高;K_m(CO_2)和V_(max)(O_2)值则保持相对的稳定。Ru BP羧化酶活性和Ru BP加氧酶活性均随叶龄增加而下降,但前者下降的速度高于后者,致使羧化/加氧此值也随叶龄增加而减小。  相似文献   

9.
pH,温度、离子强度及效应剂等对固定化烟草RuBP羧化酶在2.5mol/L尿素处理下的解离作用有各种不同的影响。在pH6.0时,仅小亚基从大亚基核(L_8)解离,当pH为中性偏碱时,大亚基核也解离。低温和低离子强度均促进酶的解离,而温度和离子强度对大亚基之间的解离的影响显著大于对大、小亚基之间的影响。这表明酶的亚基之间存在着不同的极性和疏水作用,而大亚基之间的疏水作用比大、小亚基之间的强。6-PG对大、小亚基之间解离的抑制作用表明大亚基上的催化位置与小亚基之间有一定的密切关系。  相似文献   

10.
用菠菜和苜蓿二磷酸核酮糖羧化酶(RuBPcase)的抗体对八种植物的(RuBPCase)作双向免疫扩散反应,其免疫沉淀线均是部分交叉的(以菠菜和苜蓿KuBPCase为参照抗原)。不同品种的菠菜RuBPCase对同一品种菠菜RuBPCase抗体和不同品种苜蓿RuBPCase对同一品种苜蓿RuBPCase抗体的双向免疫扩散沉淀线均完全融合。各种植物的RuBPCase对菠菜RuBPCase大亚单位抗体的双向免疫扩散沉淀线都是完全融合的。因此植物种间RuBPCase免疫化学决定簇差异决定于小亚基上,而同一种内不同品种间酶的小亚基无免疫化学决定簇的差异。  相似文献   

11.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from parsley leaves was purified by Sepharose 6B gel filtration at pH 8.3 as a single, colorless peak containing both activities. Approximately 0.2 g atom copper per mole enzyme was detected by atomic absorption spectroscopy, but this copper was not detectable by EPR spectrometry.  相似文献   

12.
The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a “closed” conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile165 and Met331) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala47) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme''s kcat for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature.  相似文献   

13.
14.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) can be divided into two branches: the “red-like type” of marine algae and the “green-like type” of cyanobacteria, green algae, and higher plants. We found that the “green-like type” rubisco from the thermophilic cyanobacterium Thermosynechococcus elongatus has an almost 2-fold higher specificity factor compared with rubiscos of mesophilic cyanobacteria, reaching the values of higher plants, and simultaneously revealing an improvement in enzyme thermostability. The difference in the activation energies at the transition stages between the oxygenase and carboxylase reactions for Thermosynechococcus elongatus rubisco is very close to that of Galdieria partita and significantly higher than that of spinach. This is the first characterization of a “green-like type” rubisco from thermophilic organism.  相似文献   

15.
16.
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein.  相似文献   

17.
We developed a continuous-addition method for maintaining subsaturating concentrations of ribulose-1,5-bisphosphate (RuBP) for several minutes, while simultaneously monitoring its consumption by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This method enabled us to observe the effects of subsaturating RuBP and CO2 concentrations on the activity of Rubisco during much longer periods than previously studied. At saturating CO2, the activity of the enzyme declined faster when RuBP was maintained at concentrations near its Km value than when RuBP was saturating. At saturating RuBP, activity declined faster at limiting than at saturating CO2, in accordance with previous observations. The most rapid decline in activity occurred when both CO2 and RuBP concentrations were subsaturating. The activity loss was accompanied by decarbamylation of the enzyme, even though the enzyme was maintained at the same CO2 concentration before and after exposure to RuBP. Rubisco activase ameliorated the decline in activity at subsaturating CO2 and RuBP concentrations. The results are consistent with a proposed mechanism for regulating the carbamylation of Rubisco, which postulates that Rubisco activase counteracts Rubisco's unfavorable carbamylation equilibrium in the presence of RuBP by accelerating, in an ATP-dependent manner, the release of RuBP from its complex with uncarbamylated sites.  相似文献   

18.
19.
20.
The properties of rice-derived ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) in different concentrations of hydrogen peroxide (H2O2) solutions have been studied. The results indicate that at low H2O2 concentrations (0.2-10 mM), the properties of rubisco (e.g., carboxylase activities, structure, and susceptibility to heat denaturation) change slightly. However, at higher H2O2 concentrations (10-200 mM), rubisco undergoes an unfolding process, including the loss of secondary and tertiary structure, forming extended hydrophobic interface, and leading to cross-links between large subunits. High concentrations of H2O2 can also result in an increase in susceptibility of rubisco to heat denaturation. Further pre-treatments with or without reductive reagents to rubisco show that the disulfide bonds in rubisco help to protect the enzyme from damage by H2O2 as well as other reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号