首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The technical feasibility of adopting the fixed-film reactor concept for biogas production from screened dairy manure was investigated. The methane production capability of laboratory-scale 4-L anaerobic reactors (conventional and fixed-film) receiving screened dairy manure and operated at 35 degrees C was compared. Dairy manure filtrate with 4.4% total solids (TS) and 3.4% volatile solids (VS) (average value) was prepared from 1:1 manure-water slurry. The feed material was added intermittently at loading rates ranging from 2.34 to 25 and 2.25 to 785 g VS/L d, respectively, for the conventional and fixed-film reactors. Maximum methane production rate (L CH(4)/L d) for the conventional reactor was 0.63 L CH(4)/L d achieved at a 6-day hydraulic retention time (HRT). For the fixed-film reactor the maximum production rate was 3.53 L CH(4)/L d when operated at a loading rate of 262 g VS/L d (3 h HRT). The fixed-film reactor was capable of sustaining a loading of 785 g VS/L d (1 h HRT). The fixed-film reactor performed much better than the conventional reactors. These results indicate that a large reduction of required reactor volume is possible through application of a fixed-film concept combined with a liquid-solid separation pretreatment of dairy manure.  相似文献   

2.
The performance of a fluidized-bed reactor (FBR) based sulfate reducing bioprocess was predicted using artificial neural network (ANN). The FBR was operated at high (65 degrees C) temperature and it was fed with iron (40-90 mg/L) and sulfate (1,000-1,500 mg/L) containing acidic (pH = 3.5-6) synthetic wastewater. Ethanol was supplemented as carbon and electron source for sulfate reducing bacteria (SRB). The wastewater pH of 4.3-4.4 was neutralized by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. The oxidation of acetate is the rate-limiting step in the sulfidogenic ethanol oxidation by thermophilic SRB, which resulted in acetate accumulation. Sulfate reduction and acetate oxidation rates showed variation depending on the operational conditions with the maximum rates of 1 g/L/d (0.2 g/g volatile solids (VS)/d) and 0.3 g/L/d (0.06 g/g VS/d), respectively. This study presents an ANN model predicting the performance of the reactor and determining the optimal architecture of this model; such as best back-propagation (BP) algorithm and neuron numbers. The Levenberg-Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 20. The developed ANN model predicted acetate (R=0.91), sulfate (R=0.95), sulfide (R=0.97), and alkalinity (R=0.94) in the FBR effluent. Hence, the ANN based model can be used to predict the FBR performance, to control the operational conditions for improved process performance.  相似文献   

3.
以纸为碳源去除地下水硝酸盐的研究   总被引:13,自引:0,他引:13  
研究了以纸为碳源和反应介质的生物反应器对水中硝酸盐的去除。结果表明,以纸为碳源的反应器启动快.反硝化反应受温度及水力停留时间影响大。25℃的反硝化速率是14℃的1.7倍。在室温25±1℃,进水硝酸盐氮浓度为45.2mg·L^-1、水力停留时间8.6h时,反应器对硝酸盐氮的去除率在99.6%以上,当水力停留时间为7.2h,氮去除率只有50%。反硝化反应受pH值和溶解氧的影响小,反应进行过程中,纸表面形成了生物膜,纸也被消耗了.采用反应器出水再经活性炭吸附的工艺流程处理高硝酸盐氮地下水,<33.9mg·L^-1的硝酸盐氮完全去除,没有出现NC2-N,最终出水水质DOC<11mg·L^-1。  相似文献   

4.
Two anaerobic filters, one mesophilic (35 degrees C) and one thermophilic (55 degrees C), were operated with a papermill wastewater at a series of organic loadings. The hydraulic retention time (HRT) ranged from 6 to 24 h with organic loading rates (OLR) 1.07-12.25 g/l per day. At loading rates up to 8.4 g COD/l d, there was no difference in terms of the removal of soluble COD (SCOD) and gas production. At the higher organic loading rate, the SCOD removal performance of thermophilic digester was slightly better compare to mesophilic digester. Similar trend was also observed in terms of the daily methane production. The stability of thermophilic digester was also better than mesophilic digester particularly for the higher organic loadings. Volatile fatty acid accumulation was observed in the effluent of the mesophilic filter at the higher organic loading rates. The Stover-Kincannon model was applied to both digesters and it was found that model was applicable to both digesters for papermill wastewater. K(B) and U(max) constants from the Stover-Kincannon model were also derived.  相似文献   

5.
The goal of this study was to examine the effect of feeding strategy on the capability for treatment and the stability of an anaerobic sequencing batch reactor (ASBR) under increasing organic loading. The lab-scale ASBR systems were operated at 35 degrees C using synthetic organic wastewater under both batch and fed-batch operational modes with different feed to cycle time (F:C) ratios. Experimental studies were conducted over a wide range of volumetric organic loading rates (VOLRs) (1.524 g COD/l/d) by varying the hydraulic retention time (HRT) (1.25, 2.5, and 5d) and the feed wastewater's COD (3750-30,000 mg/l). With an F:C ratio greater than or equal to 0.42, the fed-batch mode operation showed higher system efficiency in COD removal, volumetric methane production rate (VMPR), and specific methane production rate (SMPR) as compared to those in the batch mode with identical VOLR and HRT. In the fed-batch mode, the COD removals reached 86-95% with VOLR up to 12 g COD/l/d. The maximums for VMPR of 3.17 l CH4/l/d and for SMPR of 1.63 g CH4-COD/g VSS/d were achieved with a VOLR of 12 g COD/l/d at HRTs of 2.5 and 1.25 d, respectively. The fed-batch operation presented a lower concentration of volatile fatty acids (VFAs) than those in the batch operation. A lower concentration of VFAs confirmed the stability and efficiency of the fed-batch mode operation. The specific methanogenic activity (SMA) analysis showed that the VFA-degrading activity of the biomass in the fed-batch mode was higher for acetate and butyrate, and lower for propionate. Determined biomass yield and bacterial decay coefficients in the fed-batch operational mode were 0.05 g VSS/g COD rem and 0.001 d(-1), respectively.  相似文献   

6.
培养条件对头孢霉菌丝体脂肪酸组分的影响   总被引:10,自引:0,他引:10  
研究了头孢霉(Cephalosporium sp.)菌丝体最大生产力和多不饱和脂肪酸形成积累的条件。菌丝体最适培养条件为:麦芽糖60g/L\,KNO33g/L、起始pH为60、500mL三角瓶装100mL培养基、接种25%、25℃培养10d则菌丝体达到最大干重。多不饱和脂肪酸形成积累的最适条件为:葡萄糖10~20g/L、(NH4)2SO4或NH4Cl 3g/L、培养基起始pH为40、500mL三角瓶装100mL培养基、接种10%~20%、10℃下照光培养。〖JP2〗因此,在整个生产流程中可采用不同条件分段掌握的技术原则。同时提出在多不饱和脂肪酸的形成和积累途径中油酸(18∶1)向亚油酸(18∶2)的转化是关键,为进一步探索最适培养条件和关键酶的调节提供依据。  相似文献   

7.
The concepts of feed pretreatment, phase separation, and whole-cell immobilization technology have been incorporated in this investigation for the development of rational and cost-effective two- and three-stage methane recovery systems from water hyacinth (WH)Analyses of laboratory data reveal that a three-stage system could be designed with an alkali pretreatment stage [3.6% Na(2)CO(3) + 2.5% Ca(OH)(2) W/W, 24 h HRT] followed by an open acid reactor (2.1 days HRT) and closed immobilized methane reactor (12 h HRT), providing steady-state COD conversion of 62-65%, TVA conversion of 91-95%, and gas productivity of 4.08-5.36 L/L reactor volume/day with 82% methane. A gas yield of 50 L/kg WH/day (dry wt basis) at 35-37 degrees C is possible with this system. Insulation bricks, with particle size distribution of 500-3000 mum, were used as support material in the reactors at organic loading rate of 20 kg COD/m(3) day. The reactors matured in 15-18 weeksSubstantial reduction in retention time for the conversion of volatile acids in immobilized methane reactors prompted further research on the combined immobilized reactor to make possible an additional reduction in the cost of a WH-based biogas system. Evaluation of laboratory data reveals that a two-stage system could be designed with an open alkali pretreatment stage and a combined immobilized reactor (12 h HRT), providing steady-state COD conversion of 53% and gas productivity of 3.1 L/L reactor volume/day with 86% methane. A gas yield of 44 L/kg WH/day (dry wt basis) at 35-37 degrees C could be obtained from this system. Insulation bricks, with 500-1000 mum particle size distribution, was used as support material at an organic loading rate of 15 kg COD/m(3) day. Notwithstanding the fact that the technology in this study has been developed with water hyacinth as substrate, the implicit principles could be extended to any other organic substrate.  相似文献   

8.
The production of galacto-oligosaccharides (GOS) from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth was studied. A novel method of enzyme immobilization involving PEI-enzyme aggregate formation and growth of aggregates on individual fibrils of cotton cloth leading to multilayer immobilization of the enzyme was developed. A large amount of enzyme was immobilized (250 mg/g support) with about 90-95% efficiency. A maximum GOS production of 25-26% (w/w) was achieved at near 50% lactose conversion from 400 g/L of lactose at pH 4.5 and 40 degrees C. Tri- and tetrasaccharides were the major types of GOS formed, accounting for about 70% and 25% of the total GOS produced in the reactions, respectively. Temperature and pH affected not only the reaction rate but also GOS yield to some extend. A reaction pH of 6.0 increased GOS yield by as much as 10% compared with that of pH 4.5 while decreased the reaction rate of immobilized enzyme. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme under the same reaction conditions, suggesting diffusion limitation was negligible in the packed bed reactor and the enzyme carrier. Increase in the thermal stability of PEI-immobilized enzyme was also observed. The half-life for the immobilized enzyme on cotton cloth was close to 1 year at 40 degrees C and 21 days at 50 degrees C. Stable, continuous operation in a plug-flow reactor was demonstrated for about 3 days without any apparent problem. A maximum GOS production of 26% (w/w) of total sugars was attained at 50% lactose conversion with a feed containing 400 g/L of lactose at pH 4.5 and 40 degrees C. The corresponding reactor productivity was 6 kg/L/h, which is several-hundred-fold higher than those previously reported.  相似文献   

9.
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species.  相似文献   

10.
Pichia stipitis NRRL Y-7124 is a xylose-fermenting yeast able to accumulate ca. 57 g/L ethanol. Because optimum process conditions are important, data were collected to determine the effects of temperature and pH on growth and fermentation rates and product accumulations. Temperatures (26-35 degrees C) providing optimum biomass and ethanol productivities did not necessarily provide maximum ethanol accumulation. Xylitol and residual xylose concentrations increased with temperature. Maximum ethanol selectivity was achieved at 25-26 degrees C with minimal sacrifice to production rates. The temperature optimum for xylose could not be generalized to glucose fermentations, in which ethanol productivity and accumulation were optimum at 34 degrees C. The optimum pH range for growth and fermentation on xylose was 4-7 at 25 degrees C.  相似文献   

11.
A novel and high‐rate anaerobic sequencing bath reactor (ASBR) process was used to evaluate the hydrogen productivity of an acid‐enriched sewage sludge microflora at a temperature of 35 °C. In this ASBR process a 4 h cycle, including feed, reaction, settle, and decant steps, was repeatedly performed in a 5 L reactor. The sucrose substrate concentration was 20 g COD/L; the hydraulic retention time (HRT) was maintained at 12–120 h at the initial period and thereafter at 4–12 h. The reaction/settle period ratio, which is the most important parameter for ASBR operation was 1.7. The experimental results indicated that the hydrogenic activity of the sludge microflora was HRT‐dependent and that proper pH control was necessary for a stable operation of the bioreactor. The peak hydrogenic activity value was attained at an HRT of 8 h and an organic loading rate of 80 kg COD/m3 × day. Each mole of sucrose in the reactor produced 2.8 mol of hydrogen and each gram of biomass produced 39 mmol of hydrogen per day. An overly‐short HRT might deteriorate the hydrogen productivity. The concentration ratios of butyric acid to’acetic acid, as well as volatile fatty acid and soluble microbial products to alkalinity can be used as monitoring indicators for the hydrogenic bioreactor.  相似文献   

12.
The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na(2)CO(3) + 2.5% Ca(OH)(2) (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 L/kg WH/d at 35-37 degrees C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by closed methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 L/kg WH/d at 35-37 degrees C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.  相似文献   

13.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from extracted sunflower flour was carried out in a laboratory-scale, mesophilic (35 degrees C) fluidized-bed reactor with saponite as bacterial support. Chemical oxygen demand (COD) removal efficiencies in the range of 98.3-80.0% were achieved in the reactor at organic loading rates (OLR) of between 0.6 and 9.3 g COD/I d, hydraulic retention times (HRT) of between 20.0 and 1.1 d and average feed COD concentration of 10.6 g/l. Eighty percent of feed COD could be removed up to OLR of 9.3 g COD/l d. The yield coefficient of methane production was 0.33 l of methane (at STP) per gram of COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favorable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. The experimental data indicated that a total alkalinity in the range of 2,000-2,460 mg/l as CaCO3 was sufficient to prevent the pH from dropping to below 7.0 for OLR of up to 9.3 g COD/l d. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3-0.4) for OLR and HRT up to 9.3 g COD/l d and 1.1 d, respectively. For a HRT of 0.87 d (OLR of 12.1 g COD/l d) the start of acidification was observed in the reactor.  相似文献   

14.
The effects of hydraulic retention time (HRT) and sulfide toxicity on ethanol and acetate utilization were studied in a sulfate-reducing fluidized-bed reactor (FBR) treating acidic metal-containing wastewater. The effects of HRT were determined with continuous flow FBR experiments. The percentage of ethanol oxidation was 99.9% even at a HRT of 6.5 h (loading of 2.6 g ethanol L(-1) d(-1)), while acetate accumulated in the FBR with HRTs below 12 h (loading of 1.4 g ethanol L(-1) d(-1)). Partial acetate utilization was accompanied by decreased concentrations of dissolved sulfide (DS) and alkalinity in the effluent, and eventually resulted in process failure when HRT was decreased to 6.1 h (loading of 2.7 g ethanol L(-1) d(-1)). Zinc and iron precipitation rates increased to over 600 mg L(-1) d(-1) and 300 mg L(-1) d(-1), respectively, with decreasing HRT. At HRT of 6.5 h, percent metal precipitation was over 99.9%, and effluent metal concentrations remained below 0.08 mg L(-1). Under these conditions, the alkalinity produced by substrate utilization increased the wastewater pH from 3 to 7.9-8.0. The percentage of electron flow from ethanol to sulfate reduction averaged 76 +/- 10% and was not affected by the HRT. The lowest HRT did not result in significant biomass washout from the FBR. The effect of sulfide toxicity on the sulfate-reducing culture was studied with batch kinetic experiments in the FBR. Noncompetitive inhibition model described well the sulfide inhibition of the sulfate-reducing culture. (DS) inhibition constants (K(i)) for ethanol and acetate oxidation were 248 mg S L(-1) and 356 mg S L(-1), respectively, and the corresponding K(i) values for H(2)S were 84 mg S L(-1) and 124 mg S L(-1). In conclusion, ethanol oxidation was more inhibited by sulfide toxicity than the acetate oxidation.  相似文献   

15.
Swine wastewater was biologically treated to produce short-chain volatile organic acids (VOAs) in laboratory-scale continuously stirred tank reactors. The maximum production rates of acetic and butyric acids associated with simultaneous changes in pH and hydraulic retention time (HRT) were investigated, in which the degree of acidification of swine wastewater to the short-chain VOAs was <25% of influent chemical oxygen demand (COD) concentration. A constant inoculum system was used to minimize the experimental error due to the use of inconsistent inoculum. The inoculum system was operated with synthetic wastewater at 6000 mg soluble chemical oxygen demand per liter (pH 6.0) and 35 degrees C at 0.5 day hydraulic retention time. Response surface methodology was applied successfully to determine the optimum physiological condition for which the maximum rate of acetic acid production occurred, which was pH 5.90 and 0.88 day hydraulic retention time at 35 degrees C. The partial acidification process to manage swine waste should be operated in the optimum condition for acetic acid production because the optimum operating condition for butyric acid production approached the washout point.  相似文献   

16.
High strength slaughterhouse wastewater was treated in four 42 l anaerobic sequencing batch reactors (ASBRs) operated at 30 degrees C, 25 degrees C and 20 degrees C. The wastewater contained between 30% and 53% of its chemical oxygen demand (COD) as suspended solids (SS). The ASBRs could easily support volumetric organic loading rates (OLRs) of 4.93, 2.94 and 2.75 kg/m3/d (biomass OLRs of 0.44, 0.42 and 0.14 g/g volatile SS (VSS)/d) at 30 degrees C, 25 degrees C, and 20 degrees C, respectively. At all operating temperatures, the total COD (TCOD) and soluble COD (SCOD) were reduced by over 92%, while average SS removal varied between 80% and 96%. Over the experimental period, 90.8%, 88.7% and 84.2% of the COD removed was transformed into methane at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The decrease in the conversion of the COD removed into methane as operating temperature was lowered, may be partly explained by a lower degradation of influent SS as temperature was reduced. The reactors showed a high average methanogenic activity of 0.37, 0.34 and 0.12 g CH4-COD/gVSS/d (22.4, 12.7 and 11.8 l/d) at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The average methane content in the biogas increased from 74.7% to 78.2% as temperature was lowered from 30 degrees C to 20 degrees C.  相似文献   

17.
A comparative study on solid substrate fermentation (SSF) of sago 'hampas', oil palm frond parenchyma tissue (OPFPt) and rubberwood sawdust with Pycnoporus sanguineus for laccase production was carried out. Optimal mycelial growth of Pyc. sanguineus was observed on all the substrates studied over a 21 days time-course fermentation. Laccase productivity was highest during degradation of sago 'hampas' and OPFPt and a range from 7.5 to 7.6 U/g substrate on the 11th day of fermentation compared to degradation of rubberwood sawdust with a maximum laccase productivity of 5.7 U/g substrate on day 11 of SSF. Further optimization of laccase production was done by varying the inoculum age, density and nitrogen supplementation. SSF of OPFPt by Pyc. sanguineus gave maximum productivity of laccase of 46.5 U/g substrate on day 6 of fermentation with a 30% (w/w) of 4 weeks old inoculum and 0.92% nitrogen in the form of urea supplemented in the substrate. The extraction of laccase was also optimized in this study. Recovery of laccase was fourfold higher at 30.6 U/g substrate on day 10 of SSF using unadjusted tap water at pH 8.0 as extraction medium at 25+/-2 degrees C compared to laccase recovery of 7.46 U/g substrate using sodium acetate buffer at pH 4.8 at 4 degrees C. Further optimization showed that laccase recovery was increased by 50% with a value of 46.5 U/g substrate on day 10 of SSF when the extraction medium was tap water adjusted to pH 5.0 at 25+/-2 degrees C.  相似文献   

18.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from chickpea flour was carried out in a laboratory-scale, mesophilic (35 °C) fluidised-bed reactor with saponite as bacterial support. Soluble chemical oxygen demand (SCOD) removal efficiencies in the range of 96.8–85.2% were achieved in the reactor at organic loading rates (OLR) of between 0.58 and 2.10 g chemical oxygen demand (COD)/l per day, hydraulic retention times (HRT) of between 14.9 and 4.5 days and average feed COD concentration of 9.1 g/l. Eighty-five percent of feed COD could be removed up to OLR of 2.1 g COD/l per day. The yield coefficient of methane production was 0.34 l of methane (at STP) per gram COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favourable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. Experimental data indicated that a total alkalinity in the range of 1090–2130 mg/l as CaCO3 was sufficient to prevent the pH from decreasing to below 7.2 for OLR of up to 2.7 g COD/l per day. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3–0.4) for OLR and HRT up to 2.7 g COD/l per day and 3.5 days, respectively. For a HRT of 2.8 days (OLR of 3.00 g COD/l per day) the start of acidification was observed in the reactor.  相似文献   

19.
For the transition to the hydrogen economy, hydrogen must be produced sustainably, e.g., by the fermentation of agricultural material. Continuous fermentative production of hydrogen from an insoluble substrate in nonsterile conditions is yet to be reported. In this study hydrogen production using mixed microflora from heat-treated digested sewage sludge in nonsterile conditions from a particulate co-product of the wheat flour industry (7.5 g L(-1) total hexose) at 18- and 12-hour hydraulic retention times, pH 4.5 and 5.2, 30 degrees C and 35 degrees C was examined. In continuous operation, hydrogen yields of approximately 1.3 moles hydrogen/mole hexose consumed were obtained, but decreased if acetate or propionate levels rose, indicating metabolism shifted towards hydrogen consumption by homoacetogenesis or propionate producers. These shifts occurred both at pH 4.5 and 5.2. Sparging the reactor with nitrogen to reduce hydrogen in the off-gas from 50% to 7% gave stable operation with a hydrogen yield of 1.9 moles hydrogen /mole hexose consumed over an 18-day period.  相似文献   

20.
The mesophilic anaerobic treatment of concentrated sludge from an Atlantic salmon smolt hatchery (total solids (TS): 6.3-12.3wt%) was investigated in a continuous stirred tank reactor (CSTR) at 35 degrees C and 55-60 days hydraulic retention time (HRT). COD-stabilization between 44% and 54% and methane yields between 0.140 and 0.154l/g COD added (0.260-0.281l/g VS added) were achieved. The process was strongly inhibited, with volatile fatty acid concentrations of up to 28 g/l. But the buffer capacity was sufficient to keep the pH-value at 7.4-7.55 during the whole operation. The fertilizing value of the treated sludge was estimated to be 3.4-6.8 kg N and 1.2-2.4 kg P per ton. However, the high VFA content would necessitate special means of application. The energy from the methane that was achieved in the present study would be sufficient to cover about 2-4% of the energy demands of a flow-through hatchery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号