首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Deciphering the complex colonization history of island archipelagos is greatly facilitated by comprehensive phylogenies. In this study we investigate the phylogeny and biogeography of the insular reed‐warblers (genus Acrocephalus) of the tropical Pacific Ocean, from Australia to eastern Polynesia. Location Oceania. Methods We used sequences of mitochondrial DNA (cytochrome b, ND2 and ATP8 genes) to infer the colonization patterns of reed‐warblers endemic to Pacific islands and Australia. We sampled all known taxa of Acrocephalus in the Pacific except A. luscinius nijoi, for which no sample was available. Most taxa were represented by toe‐pad samples from museum specimens collected in the 19th and 20th centuries. With a few exceptions, several specimens per taxon were sequenced independently in two institutions (Smithsonian Institution and Natural History Museum of Geneva). Results Our data indicate that Pacific reed‐warblers do not form a monophyletic group, because A. luscinius luscinius from Guam falls outside the main Pacific radiation. The remaining Pacific taxa are divided into two clades: one clade includes all the reed‐warblers from Micronesia (except Guam) and Australia, and two Polynesian taxa from the Line Islands and the southern Marquesas; the other clade includes all remaining Polynesian taxa. The taxa endemic to three archipelagos (Mariana, Marquesas and Society islands) are polyphyletic, suggesting several independent colonizations. Main conclusions Our results provide evidence for a complex pattern of colonization of the Pacific by reed‐warblers. Calibration analyses suggest that reed‐warbler lineages are much younger than the ages of the islands they occupy. Several remote archipelagos were colonized independently more than once. Consequently, we infer that the colonization of reed‐warblers in the Pacific did not follow a regular, stepping‐stone‐like pattern. The phylogeny also suggests a previously undetected case of reverse colonization (from island to continent) for the Australian lineage and indicates that A. luscinius, as currently defined, is not monophyletic. We discuss the supertramp strategy of reed‐warblers in the Pacific and show that, although Pacific reed‐warblers meet some of the supertramp criteria in their aptitude for colonizing remote archipelagos, their life history characteristics do not fit the model.  相似文献   

2.
Aim Remote oceanic islands often provide good illustrations of adaptive radiations, but phylogenetic studies have also demonstrated unexpected multiple colonization events for a given archipelago. In this study we investigate the relationships among endemic populations of the Marquesas reed‐warbler, Acrocephalus mendanae Tristram, 1883, which have colonized nearly all islands of this remote Polynesian archipelago, and which exhibit a very uniform plumage pattern. We study the phylogeny and morphology of all subspecies in the Marquesas, providing an examination of the position of the Marquesas lineages in relation to reed‐warblers distributed across multiple Polynesian archipelagos. Location This study focused on all the main islands of the Marquesas archipelago, along with samples from other Polynesian archipelagos (Society, Tuamotu, Austral, Cook, Kiribati) and Australia. Methods We used mitochondrial DNA markers (cytochrome b and ND2 genes) to develop a phylogeny of the main eastern Polynesian taxa. All subspecies for the Marquesas were investigated, including multiple individuals per island. Phylogenetic analyses using maximum‐likelihood and Bayesian approaches were employed to infer relationships among A. mendanae populations and between the main Polynesian archipelagos. Morphometric analyses based on 110 specimens from museum collections were performed on external characters to investigate the differences between islands, and these results were compared to the phylogeny. Results Our data indicate that the Marquesas reed‐warbler is in fact a polyphyletic taxon including two independent lineages: the northern Marquesas reed‐warbler, closely related to the Tuamotu reed‐warbler, and the southern Marquesas reed‐warbler, sister taxon to that endemic to the Kiribati. Analyses of morphological characters show that the size and shape features of the Marquesas reed‐warblers exhibit high plasticity linked to adaptation to ecological factors, particularly habitat richness (the diversity of vegetation structure that provides suitable resources and habitat for reed‐warblers, simplified here as the number of indigenous plant species). Main conclusions Our results suggest that reed‐warblers have successfully colonized the Marquesas archipelago, one of the most remote groups of islands in the Pacific Ocean, at least twice. Both events occurred more or less simultaneously at ca. 0.6 Ma, and are more recent than the islands' formation. We outline the taxonomic consequences of our phylogeny and discuss the supertramp strategy of reed‐warblers in the Pacific.  相似文献   

3.
Aim Provide an empirical test of the ‘radiation zone’ hypothesis of the MacArthur–Wilson theory of island biogeography using the taxon‐pulse hypothesis of Erwin and Brooks Parsimony Analysis (BPA) on Simulium (Inseliellum) Rubstov. Location Micronesia, Cook Islands, Austral Islands, Society Islands, Marquesas Islands, Fiji and New Caledonia. Methods Primary and secondary BPA of the phylogeny of Inseliellum. Results Primary BPA showed that 15% of the taxon area cladogram contained area reticulations. Secondary BPA (invoking the area duplication convention) generated a clear sequence of dispersal for Inseliellum. The sequence follows a Micronesia – Cook Islands – Marquesas Islands – Society Islands dispersal, with a separate dispersal from the Cook Islands to the Austral Islands less than 1 Ma. A radiation in the island of Tahiti (Society Islands) produced numerous dispersals from Tahiti to other islands within the Society Islands system. Islands close to Tahiti (source island) have been colonized from Tahiti more often than islands far from Tahiti, but a higher proportion of those species colonizing distant islands have become distinct species. Main conclusions The dispersal sequence of Inseliellum exhibits both old to young island dispersal and young to old island dispersal. This is due to habitat availability on each island. Inseliellum is a model system in exemplifying the ‘radiation zone’ hypothesis of MacArthur and Wilson. As well, islands close to the source are colonized more often that those far from the source, but colonization of islands far away from the source results in a higher proportion of speciation events than for islands close to the source. The diversification of Inseliellum corresponds to a taxon‐pulse radiation, with a centre of diversification on Tahiti resulting from its large area and abundant freshwater habitats. This study illustrates the utility of BPA in identifying complex scenarios that can be used to test theories about the complementary roles of ecology and phylogeny in historical biogeography.  相似文献   

4.
Inter-archipelago exchange networks were an important aspect of prehistoric Polynesian societies. We report here a novel genetic characterization of a prehistoric exchange network involving an endemic Pacific island tree snail, Partula hyalina. It occurs in the Society (Tahiti only), Austral and Southern Cook Islands. Our genetic data, based on museum, captive and wild-caught samples, establish Tahiti as the source island. The source lineage is polymorphic in shell coloration and contains a second nominal species, the dark-shelled Partula clara, in addition to the white-shelled P. hyalina. Prehistoric inter-island introductions were non-random: they involved white-shelled snails only and were exclusively inter-archipelago in scope. Partulid shells were commonly used in regional Polynesian jewellery, and we propose that the white-shelled P. hyalina, originally restricted to Tahiti, had aesthetic value throughout these archipelagoes. Demand within the Society Islands could be best met by trading dead shells, but a low rate of inter-archipelago exchange may have prompted the establishment of multiple founder populations in the Australs and Southern Cooks. The alien carnivorous land snail Euglandina rosea has recently devastated populations of all 61 endemic species of Society Island partulid snails. Southern Cooks and Australs P. hyalina now represent the only unscathed wild populations remaining of this once spectacular land snail radiation.  相似文献   

5.
Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established.  相似文献   

6.
A common challenge in phylogenetic reconstruction is to find enough suitable genomic markers to reliably trace splitting events with short internodes. Here, we present phylogenetic analyses based on genomewide single‐nucleotide polymorphisms (SNPs) of an enigmatic avian radiation, the subspecies complex of Afrocanarian blue tits (Cyanistes teneriffae). The two sister species, the Eurasian blue tit (Cyanistes caeruleus) and the azure tit (Cyanistes cyanus), constituted the out‐group. We generated a large data set of SNPs for analysis of population structure and phylogeny. We also adapted our protocol to utilize degraded DNA from old museum skins from Libya. We found strong population structuring that largely confirmed subspecies monophyly and constructed a coalescent‐based phylogeny with full support at all major nodes. The results are consistent with a recent hypothesis that La Palma and Libya are relic populations of an ancient Afrocanarian blue tit, although a small data set for Libya could not resolve its position relative to La Palma. The birds on the eastern islands of Fuerteventura and Lanzarote are similar to those in Morocco. Together they constitute the sister group to the clade containing the other Canary Islands (except La Palma), in which El Hierro is sister to the three central islands. Hence, extant Canary Islands populations seem to originate from multiple independent colonization events. We also found population divergences in a key reproductive trait, viz. sperm length, which may constitute reproductive barriers between certain populations. We recommend a taxonomic revision of this polytypic species, where several subspecies should qualify for species rank.  相似文献   

7.
Dispersal may be a critical factor in the ability of reef-building corals to recover after major disturbances. We studied patterns of geographical structure using four microsatellite markers in seven South Pacific populations of Pocillopora meandrina, a major coral species from Polynesia. Variation within populations showed evidence of heterozygote deficiency. Genetic differentiation between populations was detected at a large scale (2000 km) between the Tonga and the Society Islands. Within the Society Islands, four of the five studied populations from Bora Bora, Moorea and Tahiti were not significantly different from each other. Unexpectedly, one of the three populations surveyed in Moorea was genetically different from the other two populations of this island (that were 5 and 10 km apart), and from the populations of the other two surveyed islands in this archipelago. We cannot rule out the possibility that this pattern is an equilibrium state, whereby short-range dispersal is locally more differentiating than long-range dispersal, as has been suggested by similar patterns reported in other studies. An alternative explanation that is globally consistent with all observations is that this is the signature of a large-scale destruction event, as for instance a bleaching event, followed by the recent restoration of populations by new colonists.  相似文献   

8.
The endemic Tahiti reed‐warbler Acrocephalus caffer occurs in two distinct morphs, a typical or ‘yellow’ morph and a melanic or ‘dark’ morph, which are found together in the valleys of the eastern and central parts of the island of Tahiti (Society Islands, French Polynesia). We investigated the molecular basis of the plumage colour polymorphism in this species using sequences of the melanocortin‐1 receptor (MC1R), a gene often found associated to melanism in birds. We found that the MC1R genotype was perfectly associated with plumage colour in the Tahiti reed‐warbler, with the same nonsynonymous substitution that showed a correlation with phenotype in the Caribbean bananaquit Coereba flaveola. An heterozygous reed‐warbler at this site presented a melanic phenotype, suggesting that the melanic allele is dominant. All other Polynesian reed‐warbler species, which do not have a melanic morph, shared the ‘yellow’ nucleotide at this position. These results suggested that the same mutation point was linked to a melanic polymorphism in two unrelated passerine birds.  相似文献   

9.
The endemic land snail genus Mandarina of the oceanic Bonin Islands shows exceptionally diverse morphological and ecological traits. Previous studies have already provided evidence that speciation on different islands of the three main archipelagos was such that similar ecotypes evolved independently in different lineages and islands. Here we present data to show that the same species can have different ecotypes. As most of the characters involved are inherited, then variation between ecotypes must represent genetic differences between populations. We then show that the radiation on the Bonin Islands is derived from a single colonization event, and use a mitochondrial phylogeny to provide evidence for a burst of cladogenesis soon after colonization. As divergent selection has previously been implicated in causing differences between Mandarina species, and theory predicts that most of the speciation should have taken place early in their history, then the study adds to the evidence for an adaptive radiation by ecological speciation in Mandarina . However, while the diversity of ecotypes present at each site is dependent on the regime of natural selection and competition, geography still must have an important role.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 269–282.  相似文献   

10.
Oceanic islands frequently support endemic faunal radiations that are highly vulnerable to introduced predators [1]. This vulnerability is epitomized by the rapid extinction in the wild of all but five of 61 described Society Islands partulid tree snails [2], following the deliberate introduction of an alien biological control agent: the carnivorous snail Euglandina rosea[3]. Tahiti's tree snail populations have been almost completely extirpated and three of the island's eight endemic Partula species are officially extinct, a fourth persisting only in captivity [2]. We report a molecular phylogenetic estimate of Tahitian Partula mitochondrial lineage survival calibrated with a 1970 reference museum collection that pre-dates the predator's 1974 introduction to the island [4]. Although severe winnowing of lineage diversity has occurred, none of the five primary Tahitian Partula clades present in the museum samples is extinct. Targeted conservation measures, especially of montane refuge populations, may yet preserve a representative sub-sample of Tahiti's endemic tree snail genetic diversity in the wild.  相似文献   

11.
Aim This study investigates the amount and distribution of genetic variation within and among populations of the highly invasive tree, Miconia calvescens (Melastomataceae; hereafter miconia), in tropical island habitats that are differently impacted (distribution and spread) by this weed. Location Invasive populations were included from northern and southern Pacific islands including the Hawaiian Islands (Hawaii, Kauai and Maui), Marquesas Islands (Nuku Hiva), Society Islands (Tahiti, Tahaa, Moorea, Raiatea) and New Caledonia. Methods We used 9 codominant microsatellite and 77 highly variable dominant intersimple sequence repeat markers (ISSRs) to characterize and compare genetic diversity among and within invasive miconia populations. For the codominant microsatellite data we calculated standard population genetic estimates (heterozygosity, number of alleles, inbreeding coefficients, etc.) and described population genetic structure using AMOVA, Mantel tests (to test for isolation by distance), unweighted pair‐group method with arithmetic averages (UPGMA) cluster analysis and principal components analysis (PCA). We also tested for the presence of a population bottleneck and used a Bayesian analysis of population structure in combination with individual assignment tests. For the dominant ISSR data we used AMOVA, PCA, upgma and a Bayesian approach to investigate population genetic structure. Results Both markers types showed little to no genetic differentiation among miconia populations from northern and southern Pacific hemispheres (AMOVA: microsatellite, 3%; ISSR, 0%). Bayesian and frequency‐based analysis also failed to support geographical genetic structure, confirming considerable low genetic differentiation throughout the Pacific. Molecular data furthermore showed that highly successful miconia populations throughout the Pacific are currently undergoing severe bottlenecks and high levels of inbreeding (f = 0.91, ISSR; FIS = 0.27, microsatellite). Main conclusions The lack of population genetic structure is indicative of similar geographical sources for both hemispheres and small founding populations. Differences in invasive spread and distribution among Pacific islands are most likely the result of differences in introduction dates to different islands and their accompanying lag phases. Miconia has been introduced to relatively few tropical islands in the Pacific, and the accidental introduction of a few or even a single seed into favourable habitats could lead to high invasive success.  相似文献   

12.
Inbreeding may impair an individual's immune system, render it more susceptible to disease and hence contribute to the extinction risk of small and isolated populations, as often found on islands. So far, surprisingly few studies have assessed the effects of inbreeding on immunocompetence in wild populations. Using 26 microsatellite loci and genetic data from museum specimens and contemporary samples, we calculated short‐term and long‐term inbreeding in 13 different mockingbird populations covering the range of all 4 species in the Galápagos Islands and compared them with three different measures of innate immunity and ectoparasite load. We found no significant effect of either measure of inbreeding on natural antibody or complement enzyme titres, heterophil‐lymphocyte ratio or feather louse abundance. Hence, our results do not support a link between inbreeding and immunocompetence. However, overall statistical power and repeatabilities of antibody and complement enzyme titres were low. Nevertheless, generally, natural antibody titres were high suggesting that the mockingbirds may be equipped with a strong first line of defence, as found in other island species.  相似文献   

13.
The phylogeny of Greek populations of the terrestrial isopod genus Ligidium is reconstructed based on three mtDNA gene segments: 12S rRNA, 16S rRNA and COI. Two widely distributed European species, as well as three outgroups belonging to different isopod genera, were also included in the analyses. The samples used represent almost all Ligidium species known to occur in Greece, as well as several populations of unknown specific status plus some new records. Phylogenetic analyses of the combined data set were performed using Bayesian inference and maximum parsimony. The two main sister clades with good support indicate the sympatric differentiation of two lineages in southern continental Greece (Peloponnisos), where Ligidium populations exhibit a mosaic distribution of sibling species. The insular populations of the Aegean Islands show increased genetic divergence and form separate clades. The presence of a third lineage of Asiatic origin is strongly suggested by both the molecular phylogeny and morphology. The only presumably valid diagnostic morphological character exhibits only partial correspondence to well supported clades of the molecular phylogeny. Genetic differentiation between populations is very high, a fact that can be attributed to the strict ecological specialization of these animals that leads to increased levels of isolation even between populations that are in close proximity. As a consequence, Greek Ligidium populations, especially those present on islands, are unique genetic pools and extremely vulnerable to extinction.  相似文献   

14.
Recent morphological and molecular studies led to the recognition of two extant species of clouded leopards; Neofelis nebulosa from mainland southeast Asia and Neofelis diardi from the Sunda Islands of Borneo and Sumatra, including the Batu Islands. In addition to these new species-level distinctions, preliminary molecular data suggested a genetic substructure that separates Bornean and Sumatran clouded leopards, indicating the possibility of two subspecies of N. diardi. This suggestion was based on an analysis of only three Sumatran and seven Bornean individuals. Accordingly, in this study we re-evaluated this proposed subspecies differentiation using additional molecular (mainly historical) samples of eight Bornean and 13 Sumatran clouded leopards; a craniometric analysis of 28 specimens; and examination of pelage morphology of 20 museum specimens and of photographs of 12 wild camera-trapped animals. Molecular (mtDNA and microsatellite loci), craniomandibular and dental analyses strongly support the differentiation of Bornean and Sumatran clouded leopards, but pelage characteristics fail to separate them completely, most probably owing to small sample sizes, but it may also reflect habitat similarities between the two islands and their recent divergence. However, some provisional discriminating pelage characters are presented that need further testing. According to our estimates both populations diverged from each other during the Middle to Late Pleistocene (between 400 and 120 kyr). We present a discussion on the evolutionary history of Neofelis diardi sspp. on the Sunda Shelf, a revised taxonomy for the Sunda clouded leopard, N. diardi, and formally describe the Bornean subspecies, Neofelis diardi borneensis, including the designation of a holotype (BM.3.4.9.2 from Baram, Sarawak) in accordance with the rules of the International Code of Zoological Nomenclature.  相似文献   

15.
The obligate avian brood parasitic common cuckoo Cuculus canorus comprises different strains of females that specialize on particular host species by laying eggs of a constant type that often mimics those of the host. Whether cuckoos are locally adapted for mimicking populations of the hosts on which they are specialized has never been investigated. In this study, we first explored the possibility of local adaptation in cuckoo egg mimicry over a geographical mosaic of selection exerted by one of its main European hosts, the reed warbler Acrocephalus scirpaceus. Secondly, we investigated whether cuckoos inhabiting reed warbler populations with a broad number of alternative suitable hosts at hand were less locally adapted. Cuckoo eggs showed different degrees of mimicry to different reed warbler populations. However, cuckoo eggs did not match the egg phenotypes of their local host population better than eggs of other host populations, indicating that cuckoos were not locally adapted for mimicry on reed warblers. Interestingly, cuckoos exploiting reed warblers in populations with a relatively larger number of co-occurring cuckoo gentes showed lower than average levels of local adaptation in egg volume. Our results suggest that cuckoo local adaptation might be prevented when different cuckoo populations exploit more or fewer different host species, with gene flow or frequent host switches breaking down local adaptation where many host races co-occur.  相似文献   

16.
Aim Islands are widely considered to be species depauperate relative to mainlands but, somewhat paradoxically, are also host to many striking adaptive radiations. Here, focusing on Anolis lizards, we investigate if cladogenetic processes can reconcile these observations by determining if in situ speciation can reduce, or even reverse, the classical island–mainland richness discrepancy. Location Caribbean islands and the Neotropical mainland. Methods We constructed range maps for 203 mainland anoles from museum records and evaluated whether geographical area could account for differences in species richness between island and mainland anole faunas. We compared the island species–area relationship with total mainland anole diversity and with the richness of island‐sized mainland areas. We evaluated the role of climate in the observed differences by using Bayesian model averaging to predict island richness based on the mainland climate–richness relationship. Lastly, we used a published phylogeny and stochastic mapping of ancestral states to determine if speciation rate was greater on islands, after accounting for differences in geographical area. Results Islands dominated by in situ speciation had, on average, significantly more species than similarly sized mainland regions, but islands where in situ speciation has not occurred were species depauperate relative to mainland areas. Results were similar at the scale of the entire mainland, although marginally non‐significant. These findings held even after accounting for climate. Speciation has not been faster on islands; instead, when extinction was assumed to be low, speciation rate varied consistently with geographical area. When extinction was high, there was some evidence that mainland speciation was faster than expected based on area. Main conclusions Our results indicate that evolutionary assembly of island faunas can reverse the general pattern of reduced species richness on islands relative to mainlands.  相似文献   

17.
The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (= H. coagulata [Say]) (Hemiptera: Cicadellidae), was a major exotic pest in French Polynesia until a classical biological control program against this pest was conducted using the host-specific egg parasitoid Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). After risk assessment studies indicated an acceptably low potential threat to non-target species, parasitoids were released on Tahiti in May 2005. One year after release, populations of H. vitripennis had decreased by more than 90% in Tahiti and nearby Moorea. Here we present results of impact studies obtained during the second post-release year for G. ashmeadi in Tahiti and Moorea; we also report for the first time on results for eight other H. vitripennis infested islands located in three different archipelagos (Society, Marquesas, and Austral) of French Polynesia. On all infested islands across the three archipelagos, arrival of G. ashmeadi slashed H. vitripennis densities by more than 95%. In Tahiti and Moorea, H. vitripennis populations were maintained at very low densities during the second post-release year. Seasonal fluctuations of H. vitripennis abundance were observed in Tahiti with pest populations being more abundant during the cooler dry season than during the warmer wet season because of lower parasitism rates. Hence, similar seasonal fluctuations of H. vitripennis abundance are expected across all infested archipelagos in French Polynesia.  相似文献   

18.
Based on limited research, the island loggerhead shrike, Lanius ludovicianus anthonyi has been considered a distinct subspecies endemic to the northern California Channel Islands. We used mtDNA control region sequences and microsatellite genotyping to compare loggerhead shrikes from the southern California mainland (L. l. gambeli), San Clemente Island (L. l. mearnsi), and the northern islands (L. l. anthonyi). Habitats on the islands are recovering due to the removal of non-native ungulates on the islands, but may be transitioning to habitats less supportive of loggerhead shrikes, so this evaluation comes at a critical time. We utilized 96 museum specimens that were collected over a century to evaluate both spatial and temporal genetic patterns. Analysis of multilocus microsatellite genotypes indicated that historical specimens of loggerhead shrikes (collected between 1897 and 1986) from the two northern islands of Santa Rosa and Santa Cruz are genetically distinct from adjacent mainland and island shrikes. Birds from Santa Catalina Island showed mixed ancestry and did not cluster with the northern island birds. Historical specimens of L. l. mearnsi from San Clemente Island also showed mixed ancestry. Our study provides evidence that a genetically distinct form of loggerhead shrikes, L. l. anthonyi, occurred on the islands of Santa Rosa and Santa Cruz.  相似文献   

19.
We summarize the results of a field and laboratory research program (1999-2006) in the Aleutian Islands on the origins of the inhabitants of the archipelago and the genetic structure of these populations. The Aleuts show closest genetic affinity to the contemporary Siberian Eskimos and Chukchi of Chukotka and differ significantly from the populations of Kamchatka (the terminus of the archipelago) and Alaskan Eskimos. Our findings support the hypothesis that the ancestors of the Aleuts crossed Beringia and expanded westerly into the islands approximately 9,000 years ago. The Monmonier algorithm indicates genetic discontinuity between contemporary Kamchatkan populations and western Aleut populations, suggesting that island hopping from Kamchatka into the western Aleutian Islands was highly unlikely. The primary determinant of the distribution of genes throughout the archipelago is geography. The most intimate relationship exists between the genetics (based on mtDNA sequences and intermatch/mismatch distances) and geographic distances (measured in kilometers). However, the Y-chromosome haplogroup frequencies are not significantly correlated with the geography of the Aleutian Islands. The underlying patterns of precontact genetic structure based on Y-chromosome markers of the Aleut populations is obscured because of the gene flow from Russian male colonizers and Scandinavian and English fishermen. We consider alternative theories about the peopling of the Americas from Siberia. In addition, we attempt a synthesis between archaeological and genetic data for the Aleutian Islands.  相似文献   

20.
The role of disease in regulating populations is controversial, partly owing to the absence of good disease records in historic wildlife populations. We examined birds collected in the Galapagos Islands between 1891 and 1906 that are currently held at the California Academy of Sciences and the Zoologisches Staatssammlung Muenchen, including 3973 specimens representing species from two well-studied families of endemic passerine birds: finches and mockingbirds. Beginning with samples collected in 1899, we observed cutaneous lesions consistent with Avipoxvirus on 226 (6.3%) specimens. Histopathology and viral genotyping of 59 candidate tissue samples from six islands showed that 21 (35.6%) were positive for Avipoxvirus, while alternative diagnoses for some of those testing negative by both methods were feather follicle cysts, non-specific dermatitis, or post mortem fungal colonization. Positive specimens were significantly nonrandomly distributed among islands both for mockingbirds (San Cristobal vs. Espanola, Santa Fe and Santa Cruz) and for finches (San Cristobal and Isabela vs. Santa Cruz and Floreana), and overall highly significantly distributed toward islands that were inhabited by humans (San Cristobal, Isabela, Floreana) vs. uninhabited at the time of collection (Santa Cruz, Santa Fe, Espanola), with only one positive individual on an uninhabited island. Eleven of the positive specimens sequenced successfully were identical at four diagnostic sites to the two canarypox variants previously described in contemporary Galapagos passerines. We conclude that this virus was introduced late in 1890's and was dispersed among islands by a variety of mechanisms, including regular human movements among colonized islands. At present, this disease represents an ongoing threat to the birds on the Galapagos Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号