首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The in vitro studies of 3H-morphine binding to synaptosomal brain and spinal cord membranes and the in vivo detection of pA2 values were carried out in mice. Both morphine-tolerant and intact animals were used. Morphine-tolerant mice showed no changes in specific binding and naloxone pA2 values. Desensitization of neural tissue is most likely to result from variation in translation from opiate receptors to subreceptor effector systems.  相似文献   

3.
Glycine, an inhibitory transmitter in spinal cord, is taken up into specific nerve terminals by means of a unique high-affinity uptake system. In this study, [3H]glycine was directly microinjected into rat ventral horn in vivo and electron microscope autoradiography used to localize the label in various anatomic compartments. Quantiative analysis showed that [3H]glycine labeled a high proportion of axosomatic and axodendritic synapses which presumably act to inhibit spinal motor neurons.  相似文献   

4.
[123I]iodomorphine (IMPH) was administered intracerebroventriculary (i.c.v.) in eight patients treated by i.c.v. morphinotherapy (i.c.v.m.). Scans obtained by γ-scintigraphy over 1 h post-injection showed only a slight diffusion of IMPH beyond the ventricular system, particular attention being paid to the spinal cord.These data agree well with induced i.c.v.m. analgesia (mean latency 20 min) and biological results such as HPLC assay of morphine in the lumbar cerebrospinal fluid, supporting the action of morphine only on the central opiate receptors.  相似文献   

5.
Summary The high sensitivity of the magnesium-dithizonate silver-dithizonate (MDSD) staining procedure makes this method very suitable for the histochemical localization of copper in different regions of the central nervous system of adult rats. In the telencephalon (bulbus olfactorius, nucleus caudatus-putamen, septum pellucidum and are dentata), diencephalon (nucleus habenulae medialis, nuclei of the hypothalamus in the vicinity of the third ventricle, and corpus mamillare), mesencephalon (substantia nigra), cerebellum (mainly in the nodulus), pons (locus coeruleus, nucleus vestibularis), medulla oblongata (nucleus tractus solitarii) and spinal cord, the glial cells exhibit specific copper staining. The glial cells of some circumventricular organs (e.g. the subfornical organ) are also stained using the MDSD method. The significant staining observed in whitematter glial cells (e.g. in the corpus callosum, cerebellum and spinal cord) further indicates the very high sensitivity of this method. In glial cells of the same regions, the presence of copper can likewise be demonstrated using the modified sulphide silver method. On the basis of the present histochemical results, it is suggested that copper may play an important role in the normal physiological functioning of glial cells and also, via glia-neuron interactions, in neuronal processes.  相似文献   

6.
Diazepam elevates serotonin (5HT) and 5-hydroxyindoleacetic acid (5HIAA) concentrations in rat brain and spinal cord. The maximal effect occurs 1–2 hrs after drug injection and is dose related between 5–20 mg/kg (intraperitoneal). The action of diazepam on brain 5HT and 5HIAA concentrations is modified by previous food consumption: the ingestion of a diet that raises brain 5HT and 5HIAA one hour before drug injection enhances the diazepam-induced increase in brain indoles; consumption of a diet that lowers brain 5HT and 5HIAA partially blocks the elevation in brain indoles that follows diazepam injection.  相似文献   

7.
8.
Thyrotropin-releasing hormone (TRH) and TRH extended peptides were extracted from rat hypothalamus and spinal cord and resolved by gel exclusion chromatography under dissociating conditions. Peptides related to TRH were detected by trypsin digestion and radioimmunoassay with an antibody to TRH or an antibody raised against the pentapeptide Glp-His-Pro-Gly-Lys. In addition to the tripeptide hormone a series of C-terminally extended forms of TRH was shown to occur in both tissues; no N-terminally extended peptides were detected. The structure of the TRH-related peptides was confirmed by chromatographic identification of the N-terminal pentapeptide sequence released by trypsin. The TRH extended peptides, which accounted for 15-20% of the total TRH, were present in three groups of different molecular size corresponding to predicted fragments of the TRH prohormone. One of the peptides in the spinal cord was identified by chromatographic comparison with a synthetic 16-residue peptide representing residues 154-169 of the prohormone. In the spinal cord the TRH extended peptides differed in their relative concentrations from the corresponding peptides in the hypothalamus, possibly reflecting differences in processing. The finding of extended forms of TRH in which the extension occurs only on the C-terminal side of the hormone sequence shows that the prohormone undergoes highly specific processing.  相似文献   

9.
10.
11.
M.F. Ren  C.H. Lu  J.S. Han 《Peptides》1985,6(6):1015-1020
Intrathecal injection of subanalgesic doses of morphine (7.5 nmol) and dynorphin-A-(1–13) (1.25 nmol) in combination resulted in a marked analgesic effect as assessed by tail flick latency in the rat. The analgesic effect of the composite dynorphin/morphine was dose-dependent in serial dilutions so that a composition of 1/8 of the analgesic dose of dynorphin and 1/3 that of morphine produced an analgesic effect equipotent to full dose of either drug applied separately. The analgesic effect induced by dynorphin/morphine mixture was not accompanied by motor dysfunction and was easily reversed by a small dose (0.5 mg/kg) of naloxone. Contrary to the augmentatory effect of dynorphin on morphine analgesia in the spinal cord, intracerevroventricular (ICV) injection of 20 nmol of dynorphin-A-(1–13) exhibited a marked antagonistic effect on the analgesia produced by morphine (120 nmol, ICV). The theoretical considerations and practical implications of the differential interactions between dynorphin-A-(1–13) and morphine in the brain versus spinal cord are discussed.  相似文献   

12.
To characterize the biological functions of rat brain (B-type) natriuretic peptide (BNP), which has been shown to be present mainly in the heart and only faintly in the spinal cord, the concentration and molecular forms of BNP in plasma and spinal cord were determined. The concentration of immunoreactive (ir-) BNP was 2.00 fmol/ml in normal rat and 13.29 fmol/ml in morphine-treated rat, being respectively about 1/20 and 1/80 those of ir-atrial (A-type) natriuretic peptide (ANP). In morphine-treated rats, ir-BNP was shown to circulate mainly as BNP-45, which is identical to a major storage form found in cardiac atrium. In the spinal cord, BNP was also shown to be present as BNP-45, but its concentration was only 0.057 pmol/g, being about 1/60 that of spinal cord ANP. These results confirm that BNP mainly functions as a circulating hormone in the molecular form of BNP-45. Morphine stimulates secretion of ANP and BNP but by different ratios, suggesting different regulation systems for storage and secretion of ANP and BNP.  相似文献   

13.
Neuromedin K and neuromedin L are novel mammalian tachykinins isolated from porcine spinal cord. We have developed a highly sensitive radioimmunoassay for neuromedin K. Since the radioimmunoassay for neuromedin K has significant crossreactivity with neuromedin L and substance P, we can simultaneously determine the tissue concentrations of neuromedin K, neuromedin L and substance P after separation of the tissue extracts by reverse phase high performance liquid chromatography. Substance P is found to be the most abundant mammalian tachykinin in every brain region. The ratio of the concentration of substance P to neuromedin K is small in cerebral cortex and large in medulla-pons, while that of substance P to neuromedin L is rather constant in a range of 2.0–2.5. In spinal cord, dorsal half contains more neuromedin K and L than ventral half as is the case with substance P. These results indicate that both neuromedin K and L are endogenous mammalian tachykinins with specific physiological functions.  相似文献   

14.
The orexins are recently identified appetite-stimulating hypothalamic peptides. We used immunohistochemistry to map orexin-A and orexin-B immunoreactivity in rat brain, spinal cord, and some peripheral tissues. Orexin-A- and orexin-B-immunoreactive cell bodies were confined to the lateral hypothalamic area and perifornical nuclei. Orexin-A-immunoreactive fibers were densely distributed in the hypothalamus, septum, thalamus, locus coeruleus, spinal cord, and near the ventricles, but absent from peripheral sites investigated. In contrast, orexin-B-immunoreactive fibers were distributed sparsely in the hypothalamus. Orexin cells are strategically sited to contribute to feeding regulation, but their widespread projections suggest that orexins have other physiological roles.  相似文献   

15.
Six proteolytic enzymes were assayed for activity in quaking CNS in examining the hypothesis that increased proteolytic activity contributes to the hypomyelination characteristic of this mutant. Cathepsin B-like enzyme, cathepsin D, neutral proteinase, calcium-activated neutral proteinase, prolyl endopeptidase, and diaminopeptidase II were assayed in whole homogenate of brain or spinal cord and each was found to have activity similar to that in normal mice. These results do not support a relationship between proteolysis and the genetic defect and suggest that other factors should be investigated to delineate the pathogenesis of this mutant.  相似文献   

16.
17.
18.
Summary By use of the PAP-immunohistochemical staining technique with serial sections, somatostatin-immunoreactive fiber projections into the brain stem and the spinal cord are described. These projections originate in the periventricular somatostatin-immunoreactive perikarya of the hypothalamus and form three main pathways: (1) along the stria medullaris thalami and the fasciculus retroflexus into the interpeduncular nucleus; (2) along the medial forebrain bundle into the mammillary body; and (3) via the periventricular gray and the bundle of Schütz into the midbrain tegmentum. Densely arranged immunoreactive fibers and/or basket-like fiber terminals are observed within the following afferent systems: somatic afferent systems (nucleus spinalis nervi trigemini, substantia gelatinosa dorsalis of the entire spinal cord), and visceral afferent systems (nucleus solitarius, regio intermediolateralis and substantia gelatinosa of the sacral spinal cord). These projections form terminals around the perikarya of the second afferent neuron. Perikarya of the third afferent neuron are influenced by somatostatin-immunoreactive projections into the auditory system (nucleus dorsalis lemnisci lateralis, nucleus corporis trapezoidei). Furthermore, a somatostatin-immunoreactive fiber projection is found in the ventral part of the medial accessory olivary nucleus, in nuclei of the limbic system (nucleus habenularis medialis, nuclei supramamillaris and mamillaris lateralis) and in the formatio reticularis (nucleus Darkschewitsch, nuclei tegmenti lateralis and centralis, nucleus parabrachialis lateralis, as well as individual perikarya of the reticular formation). Targets of these projections are interneurons within interlocking neuronal chains.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/3) and Stiftung Volkswagenwerk  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号