首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The accumulation of oat (Avena sativa L.) phytoalexins, avenanthramides, occurred in leaf segments treated with oligo-N-acetylchitooligosaccharides. The amount of avenanthramide A, the major oat phytoalexin, reached a maximum 36–48 h after elicitor treatment. This accumulation was preceded by a marked increase in enzyme activities of phenylpropanoid pathway members, including phenylalanine ammonia-lyase (EC 4.3.1.5), cinnamate 4-hydroxylase (EC 1.14.13.11) and 4-coumarate:CoA ligase (EC 6.2.1.12). These enzyme activities reached a maximum 6–12 h after elicitor treatment, when the avenanthramides were produced most rapidly. Both phenylalanine ammonia-lyase and 4-coumarate:CoA ligase activities decreased thereafter to undetectable levels 72 h after treatment, while cinnamate 4-hydroxylase activity showed a second increase 48 h after treatment. Among the chitooligosaccharides tested, tetra- and pentasaccharides most effectively induced these enzyme activities in a dose-dependent manner. The elicitor-induced 4-coumarate: CoA ligase accepted all hydroxycinnamic acids occurring in the avenanthramides as substrates, with the exception of avenalumic acid. These findings indicate that accumulation of the avenanthramides results from de-novo synthesis through the general phenylpropanoid pathway and that early biosynthetic enzymes function as regulatory points of carbon flow to the avenanthramides. Received: 3 December 1998 / Accepted: 27 January 1999  相似文献   

3.
The induction of the phenylpropanoid pathway and of tyramine metabolism was monitored in cell suspension cultures of Nicotiana tabacum treated with cell wall-degrading enzymes, in an attempt to correlate the synthesis of hydroxycinnamic acid amides of tyramine with the formation of wall-bound phenolic polymers. Treatment with commercial pectinase (from Penicilium occitanis ) induced a rapid rise in phenylalanine ammonia-lyase (EC 4.3.1.5), 4-coumarate:CoA ligase (EC 6.2.1.12), tyramine hydroxycinnamoyltransferase (EC 2.3.1.110) and peroxidase (EC 1.11.1.7) activities, and a concomitant decline in cinnamyl alcohol dehydrogenase (EC 1.1.1.195) activity. The induction of the phenylpropanoid pathway and of the synthesis of cinnamoyl-tyramines preceded the death of a large proportion of the elicited cells. When the cultures were treated with pronase (from Streptomyces griseus ), most cells remained alive and the induction of enzymes of the phenylpropanoid pathway lasted for several days, resulting in an accumulation of cinnamoyltyramines in the cells and in the culture medium. Treatment with pronase induced an increase in the activity of moderately anionic isoperoxidases which were also induced in pectinase-treated cells. Cinnamyl alcohol dehydrogenase activity remained stable in pronase-elicited cells, which rapidly accumulated thioglycolic acid-extractable phenolic polymers in their cell walls. The accumulation of these polymers coincided with the induction of 4-coumarate:CoA ligase but preceded the rise in tyramine hydroxycinnamoyltransferase and peroxidase activities.  相似文献   

4.
Large and rapid increases in the activities of two enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase and 4-coumarate:CoA ligase, occurred in suspension-cultured parsley cells (Petroselinum hortense) treated with an elicitor preparation from Phytophthora megasperma var. sojae. Highest enzyme activities were obtained with an elicitor concentration similar to that required for maximal phenylalanine ammonialyase induction in cell suspension cultures of soybean, a natural host of the fungal pathogen.  相似文献   

5.
6.
Both polysaccharide-linked hydroxycinnamoyl esters (PHEs) and lignin are biosynthesized via the phenylpropanoid pathway. In the abnormal internode parenchyma of the rice (Oryza sativa L.) mutant Fukei 71, which has a defective recessive gene (d50), the biosynthesis of lignin and PHEs differs. . The polysaccharide-linked ferulate and p-coumarate have been shown to accumulate to high levels in the irregularly shaped and collapsed internode parenchyma cells of Fukei 71 without an accompanying overaccumulation of lignin as a result of the defective d50 gene. In the present study we demonstrated that in this abnormal parenchyma tissue of Fukei 71 the expression of phenylalanine ammonia lyase (PAL) and glutamine synthetase (GS) were ectopically induced with the ectopic accumulation of PHEs, suggesting that the d50 gene may play a role as a controlling element in the biosynthesis of PHEs during cell-wall formation in the grasses.  相似文献   

7.
Variations in teh activities of several enzymes of phenylpropanoid metabolism were studied in fermenter-grown cell suspension cultures of soyben (Glycine max).Concomitant large increases and subsequent decreases in the activities of phenylalanine ammonina-lyase (EC 4.3.1.5), cinnamic acid 4-hydroxylase, and two isoenzymes of p-coumarate:CoA ligase occurred prior to the stationary phase of the cell cultures. These findings represent a further example of an interdependent regulation of these enzymes of the general phenylpropanoid metabolism.The increases in all of these enzyme activities could be further enhanced by illunination of the cells.No comparable light effects and no significant changes were observed for the specific activity of an S-adenosylmethionine:o-dihydric phenol m-O-mehyltransferase and for the overall rate of the two-step reduction of feruloyl-CoA to coniferyl alcohol. These enzymatic reactions therefore appear to be regulated independently of the enzymes of the general phenylpropanoid metabolism.  相似文献   

8.
Aims: To evaluate the potentiality of three rhizosphere microorganisms in suppression of Sclerotinia rot in pea in consortia mode and their impact on host defence responses. Methods and Results: Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 from rhizospheric soils were selected based on compatibility, antagonistic and plant growth promotion activities. The microbes were used as consortia to assess their ability to trigger the phenylpropanoid and antioxidant activities and accumulation of proline, total phenol and pathogenesis‐related (PR) proteins in pea under the challenge of the soft‐rot pathogen Sclerotinia sclerotiorum. The triple‐microbe consortium and single‐microbe treatments showed 1·4–2·3 and 1·1–1·7‐fold increment in defence parameters, respectively, when compared to untreated challenged control. Activation of the phenylpropanoid pathway and accumulation of total phenolics were highest at 48 h, whereas accumulation of proline and PR proteins along with activities of the antioxidant enzymes was highest at 72 h. Conclusions: The compatible microbial consortia triggered defence responses in an enhanced level in pea than the microbes alone and provided better protection against Sclerotinia rot. Significance and Impact of the Study: Rhizosphere microbes in consortium can enhance protection in pea against the soft‐rot pathogen through augmented elicitation of host defence responses.  相似文献   

9.
Treatment with an autoclaved culture homogenate of the yeastRhodotorula rubra induces rapid accumulation of acridone epoxides, furoquinolines and furanocoumarins in cell cultures ofRuta graveolens (L). The increased accumulation is preceeded by an induction of enzymes of the biosynthetic pathways. In the case of furanocoumarins induction was shown for phenylalanine ammonia-lyase (PAL), 4-coumarate: CoA ligase (4-CL) and S-adenosyl-l-methionine: xanthotoxol O-methyltransferase (XOMT). For PAL and 4-CL time courses of induced activity showed an early maximum, 8–12 h after treatment, whereas XOMT was found to reach its maximum later, about 36–42 h after treatment. The elicitor dose-response curve showed saturation at an elicitor concentration of 1%. At any time during the whole culturing period cells responded to elicitiation but the maximum enzyme activities induced were lower at the late stages. Experiments with different suspension culture strains, a shoot teratoma culture and hydroponically grown sterile photomixotrophic plants were performed to assess the influence of differentiation on constitutive activities of these enzymes and their inducibility by elicitation. Constitutive furanocoumarin accumulation was positively correlated with the level of differentiation. Although induction of PAL, 4-CL and XOMT activity always accompanied induced furanocoumarin accumulation no absolute correlation existed between induced enzyme activities and the induced product level or relative product increase.Abbreviations 4-CL 4-coumarate:CoA ligase - COMT S-adenosyl-l-methionine:caffeic acid 3-O-methyltransferase - PAL phenylalanine:ammonia-lyase - XOMT S-adenosyl-l-methionine:xanthotoxol O-methyltransferase  相似文献   

10.
Elicitor induction of phenylpropanoid metabolism was investigated in suspension-cultured cells of the fast-growing poplar hybrid (Populus trichocarpa Torr. & Gray × Populus deltoides Marsh) H11-11. Treatment of cells with polygalacturonic acid lyase or two fungal elicitors resulted in rapid and transient increases in extractable l-phenylalanine ammonia lyase and 4-coumarate:coenzyme A ligase enzyme activities. The substrate specificity of the inducible 4-coumarate:coenzyme A ligase enzyme activity appeared to differ from substrate specificity of 4-coumarate:coenzyme A ligase enzyme activity in untreated control cells. Large and transient increases in the accumulation of l-phenylalanine ammonia-lyase and 4-coumarate:coenzyme A ligase mRNAs preceded the increases in enzyme activities and were detectable by 30 minutes after the start of elicitor treatment. Chalcone synthase, cinnamyl alcohol dehydrogenase, and coniferin β-glucosidase enzyme activities were unaffected by the elicitors, but a large and transient increase in β-glucosidase activity capable of hydrolyzing 4-nitrophenyl-β-glucoside was observed. Subsequent to increases in l-phenylalanine ammonialyase and 4-coumarate:coenzyme A ligase enzyme activities, cell wall-bound thioglycolic acid-extractable compounds accumulated in elicitor-treated cultures, and these cells exhibited strong staining with phloroglucinol, suggesting the accumulation of wall-bound phenolic compounds.  相似文献   

11.
Using in situ RNA/RNA hybridization, enzyme immunolocalization, and histochemical techniques, several phenylpropanoid biosynthetic activities and products were localized in tissue sections from various aerial parts of parsley (Petroselinum crispum) plants at different developmental stages. The enzymes and corresponding mRNAs analyzed included two representatives of general phenylpropanoid metabolism: phenylalanine ammonia-lyase (PAL) and 4-coumarate: CoA ligase (4CL), and one representative each from two distinct branch pathways: chalcone synthase (CHS; flavonoids) and S-adenosyl-L-methionine: bergaptol O-methyltransferase (BMT; furanocoumarins). In almost all cases, the relative timing of accumulation differed greatly for mRNA and protein and indicated short expression periods and short half-lives for all mRNAs as compared to the proteins. PAL and 4CL occurred almost ubiquitously in cell type-specific patterns, and their mRNAs and proteins were always coordinately expressed, whereas the cell type-specific localization of flavonoid and furanocoumarin biosynthetic activities was to a large extent mutually exclusive. However, the distribution patterns of CHS and BMT, when superimposed, closely matched those of PAL and 4CL in nearly all tissues analysed, suggesting that the flavonoid and furanocoumarin pathways together consituted a large majority of the total phenylpropanoid biosynthetic activity. Differential sites of synthesis and accumulation indicating intercellular translocation were observed both for flavonoids and for furanocoumarins in oil ducts and the surrounding tissue. The widespread occurrence of both classes of compounds, as well as selected, pathway-specific mRNAs and enzymes, in many cell types of all parsley organs including various flower parts suggests additional functions beyond the previously established roles of flavonoids in UV protection and furanocoumarins in pathogen defence.  相似文献   

12.
13.
W. Knogge  G. Weissenböck 《Planta》1986,167(2):196-205
Primary leaves of oats (Avena sativa L.) have been used to study the integration of secondary phenolic metabolism into organ differentiation and development. In particular, the tissue-specific distribution of products and enzymes involved in their biosynthesis has been investigated. C-Glucosylflavones along with minor amounts of hydroxycinnamic-acid esters constitute the soluble phenolic compounds in these leaves. In addition, considerable amounts of insoluble products such as lignin and wall-bound ferulic-acid esters are formed. The tissue-specific activities of seven enzymes were determined in different stages of leaf growth. The rate-limiting enzyme of flavonoid biosynthesis in this system, chalcone synthase, together with chalcone isomerase (EC 5.5.1.6) and the terminal enzymes of the vitexin and isovitexin branches of the pathway (a flavonoid O-methyltransferase and an isovitexin arabinosyltransferase) are located in the leaf mesophyll. Since the flavonoids accumulate predominantly (up to 70%) in both epidermal layers, an intercellular transport of products is postulated. In contrast to the flavonoid enzymes, L-phenylalanine ammonia-lyase (EC 4.3.1.5), 4-coumarate: CoA ligase (EC 6.2.1.12), and S-adenosyl-L-methionine: caffeate 3-O-methyltransferase (EC 2.1.1.-), all involved in general phenylpropanoid metabolism, showed highest activities in the basal leaf region as well as in the epidermis and the vascular bundles. We suggest that these latter enzymes participate mainly in the biosynthesis of non-flavonoid phenolic products, such as lignin in the xylem tissue and wall-bound hydroxycinnamic acid-esters in epidermal, phloem, and sclerenchyma tissues.Abbreviations CHI chalcone isomerase - CHS chalcone synthase - 4CL 4-coumarate: CoA ligase - CMT S-adenosyl-L-methionine:caffeate 3-O-methyltransferase - FMT S-adenosyl-L-methionine:vitexin 2-O-rhamnoside 7-O-methyltransferase - HPLC high-performance liquid chromatography - IAT uridine 5-diphosphate L-arabinose:isovitexin 2-O-arabinosyltransferase - PAL L-phenylalanine ammonia-lyase  相似文献   

14.
Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5?% along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52–76?% improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.  相似文献   

15.
Parsley cell cultures produce linear furanocoumarins and the linear benzodipyrandione, graveolone, in response to treatment with an elicitor from either Phytophthora megasperma or Alternaria carthami. Activities of enzymes involved in general phenylpropanoid metabolism, phenylalanine ammonia-lyase and 4-coumarate: CoA ligase, as well as of an enzyme involved specifically in furanocoumarin biosynthesis, dimethylallyl diphosphate: umbelliferone dimethylallyltransferase, were monitored over several days after treatment with A. carthami elicitor. In addition, the activities of chalcone synthase, an enzyme involved in flavonoid formation, and of glucose-6-phosphate: NADP 1-oxidoreductase were also monitored. The lyase and the ligase activities increased steadily for 48 h and the dimethylallyltransferase activity for 54 h, while the synthase activity was not altered and the oxidoreductase activity decreased gradually. In some experiments, phenylalanine ammonia-lyase activity reached a maximum value of 250 mukat/kg, twice the maximal activity observed previously in parsley cells after treatment with either ultraviolet light or an elicitor preparation from P. megasperma. In crude extracts, phenylalanine ammonia-lyase activity was shown to be inhibited by unidentified small-molecular-weight compounds which were formed in proportion to the elicitor treatment. While phenylalanine ammonia-lyase and dimethylallyl diphosphate: umbelliferone dimethylallyltransferase are known to be required for furanocoumarin biosynthesis, the involvement of 4-coumarate: CoA ligase is as yet unclear. The concomitant increase and decrease of the ligase activity with the activities of the lyase and the dimethylallyltransferase, as well as its similar response to elicitor concentrations, suggest that CoA esters of cinnamic acids play a role in the biosynthesis of furanocoumarins.  相似文献   

16.
When cultured in inductive medium containing adequate auxin and cytokinin, isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate into tracheary elements with lignified secondary wall thickenings. Differentiation does not occur when cells are cultured in control medium, which has reduced levels of auxin and/or cytokinin. The activities of two enzymes involved in lignin synthesis, 4-coumarate:coenzyme A ligase and peroxidase, were examined. An induction-specific cationic isoperoxidase, visualized by low pH polyacrylamide gel electrophoresis, is detectable in soluble and wall fractions of cultured Zinnia cells long before tracheary elements visibly differentiate and is thus an early marker of differentiation. Compounds (such as antiauxins, anticytokinins, and tunicamycin) that inhibit or delay differentiation alter the expression of this isoperoxidase. 4-Coumarate:coenzyme A ligase activity increases dramatically only as cells differentiate. Together, these results suggest that the onset of lignification in differentiating Zinnia cells might be controlled by the availability of precursors synthesized by way of 4-coumarate:coenzyme A ligase. These precursors would then be polymerized into lignin in the cell wall by the induction-specific isoperoxidase.  相似文献   

17.
18.
4-coumarate:CoA ligase (4CL), the last enzyme of the general phenylpropanoid pathway, provides precursors for the biosynthesis of a large variety of plant natural products. 4 CL catalyzes the formation of CoA thiol esters of 4-coumarate and other hydroxycinnamates in a two step reaction involving the formation of an adenylate intermediate. 4 CL shares conserved peptide motifs with diverse adenylate-forming enzymes such as firefly luciferases, non-ribosomal peptide synthetases, and acyl:CoA synthetases. Amino acid residues involved in 4 CL catalytic activities have been identified, but domains involved in determining substrate specificity remain unknown. To address this question, we took advantage of the difference in substrate usage between the Arabidopsis thaliana 4 CL isoforms At4CL1 and At4CL2. While both enzymes convert 4-coumarate, only At4CL1 is also capable of converting ferulate. Employing a domain swapping approach, we identified two adjacent domains involved in substrate recognition. Both substrate binding domain I (sbd I) and sbd II of At4CL1 alone were sufficient to confer ferulate utilization ability upon chimeric proteins otherwise consisting of At4CL2 sequences. In contrast, sbd I and sbd II of At4CL2 together were required to abolish ferulate utilization in the context of At4CL1. Sbd I corresponds to a region previously identified as the substrate binding domain of the adenylation subunit of bacterial peptide synthetases, while sbd II centers on a conserved domain of so far unknown function in adenylate-forming enzymes (GEI/LxIxG). At4CL1 and At4CL2 differ in nine amino acids within sbd I and four within sbd II, suggesting that these play roles in substrate recognition.  相似文献   

19.
Abd El-Mawla AM  Beerhues L 《Planta》2002,214(5):727-733
Biosynthesis of benzoic acid from cinnamic acid has been studied in cell cultures of Hypericum androsaemum L. The mechanism underlying side-chain shortening is CoA-dependent and non-beta-oxidative. The enzymes involved are cinnamate:CoA ligase, cinnamoyl-CoA hydratase/lyase and benzaldehyde dehydrogenase. Cinnamate:CoA ligase was separated from benzoate:CoA ligase and 4-coumarate:CoA ligase, which belong to xanthone biosynthesis and general phenylpropanoid metabolism, respectively. Cinnamoyl-CoA hydratase/lyase catalyzes hydration and cleavage of cinnamoyl-CoA to benzaldehyde and acetyl-CoA. Benzaldehyde dehydrogenase finally supplies benzoic acid. In cell cultures of H. androsaemum, benzoic acid is a precursor of xanthones, which accumulate during cell culture growth and after methyl jasmonate treatment. Both the constitutive and the induced accumulations of xanthones were preceded by increases in the activities of all benzoic acid biosynthetic enzymes. Similar changes in activity were observed for phenylalanine ammonia-lyase and the xanthone biosynthetic enzymes benzoate:CoA ligase and benzophenone synthase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号