首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In Escherichia coli K-12, sbcB/xonA is the structural gene for exonuclease I, an enzyme that hydrolyzes single-stranded DNA to mononucleotides in the 3'-to-5' direction. This enzyme has been implicated in the DNA repair and recombination pathways mediated by the recB and recC gene products (exonuclease V). We have cloned several sbcB/xonA mutant alleles in bacterial plasmids and have partially characterized the cloned genes and their protein products. Two of the mutations (xonA2 and xonA6) retain no detectable exonucleolytic activity on single-stranded DNA. The xonA6 allele was shown to harbor an insertion of an IS30-related genetic element near the 3' end of the gene. Two other mutations, sbcB15 and xonA8, exhibited significantly reduced levels of exonuclease I activity as compared to the cloned wild-type gene. A correlation was observed between levels of exonuclease I activity and the ability of the sbcB/xonA mutations to suppress UV sensitivity in recB and recC strains. Also, recombinant plasmids bearing either the sbcB15 or xonA6 allele exhibited a high degree of instability during growth of their bacterial hosts. The results suggest that the sbcB/xonA gene product is a bi- or multifunctional protein that interacts with single-stranded DNA and possibly with other proteins in the suppression of genetic recombination and DNA-repair deficiencies in recB and recC mutants.  相似文献   

2.
Interplasmidic and intraplasmidic recombination proficiencies were determined in E. coli bacterial strains carrying rec mutations. Our results defined the role of recF gene function, recB, recC, and sbcB gene products (exonuclease V and exonuclease I) in plasmidic recombination in wild-type E. coli cells and in cells in which the recE recombination pathway is activated. RecF gene function is required for interplasmidic recombination regardless of the recB recC genotype. Intraplasmidic recombination is recF dependent in cells having a functional exonuclease V, but not in recB recC mutants. Exonuclease V activity inhibits both interplasmidic and intraplasmidic recombination via the recE pathway.  相似文献   

3.
The effect of mutations in known recombination genes (recA, recB, recC, recE, recF, recJ, recN, recO, recQ and ruv) on intramolecular recombination of plasmids was studied in recB recC sbcB and recB recC sbcA Escherichia coli mutants. The rate of recombination of circular dimer plasmids was at least 1000-fold higher in recB recC sbcB or recB recC sbcA mutants as compared to wild-type cells. The rate was decreased by mutations in recA, recF, recJ, recO, ruv or mutS in recB recC sbcB mutants, and by mutations in recE, recN, recO, recQ, ruv or mutS in recB recC sbcA mutants. In addition to measuring the recombination rate of circular dimer plasmids, the recombination-mediated transformation of linear dimer plasmids was also studied. Linear dimer plasmids transformed recB recC sbcB and recB recC sbcA mutants 20- to 40-fold more efficiently than wild-type cells. The transformation efficiency of linear dimer plasmids in recB recC sbcB mutants was decreased by mutations in recA, recF, recJ, recO, recQ or lexA (lexA3). In recB recC sbcA mutants the transformation efficiency of linear dimers was decreased only by a recE mutation. Physical analysis of linear dimer- or circular dimer-transformed recB recC sbcB mutants revealed that all transformants contained recombinant monomer genotypes. This suggests that recombination in recB recC sbcB cells is very efficient.  相似文献   

4.
The stability of two ColE1-related plasmids (pRSF2124 and pMB9) was examined in strains of Escherichia coli multiply deficient in exonucleases I (sbcB), III (xthA), or V (recB recC). Any combination of exonuclease I, III, and V deficiency resulted in dramatically decreased stability of both pRSF2124 and pMB9. Inactivation of the RecF pathway by introducing either recF or recJ mutations to the recB recC subcB background resulted in nearly wild-type levels of stability for both plasmids. In contrast, the introduction of uvrD3 uvr-257, uvrE100, or recL152 into the recB21 recC22 sbcB15 strain did not affect plasmid stability. Furthermore, the amount of plasmid DNA recovered from pRSF2124 or pMB9 transformants of a xthA1 sbcB15 strain was strikingly reduced relative to that of a wild-type control. Taken together, these results suggest that some aspect of DNA repair is required for stable maintenance of ColE1-related plasmids in E. coli.  相似文献   

5.
Shutoff of respiration is one of a number of recA+ lexA+ dependent (SOS) responses caused by far ultraviolet (245 nm) radiation (UV) damage of DNA in Escherichia coli cells. Thus far no rec/lex response has been shown to require the recB recC gene product, the RecBC enzyme. We report in this paper that UV-induced respiration shutoff did not occur in either of these radiation-sensitive derivatives of K12 strain AB1157 nor in the recB recC double mutant. The sbcB gene product is exonuclease I and it has been reported that the triple mutant strain recB recC sbcB has near normal recombination efficiency and resistance to UV. The sbcB strain shut off its respiration after UV but the triple mutant did not show UV-induced respiration shutoff; the shutoff and death responses were uncoupled. We concluded that respiration shutoff requires RecBC enzyme activity. The RecBC enzyme has ATP-dependent double-strand exonuclease activity, helicase activity and several other activities. We tested a recBC+ (double dagger) mutant strain (recC 1010) that had normal recombination efficiency and resistance to UV but which possessed no ATP-dependent double-strand exonuclease activity. This strain did not shut off its respiration. The presence or absence of other RecBC enzyme activities in this mutant is not known. These results support the hypothesis that ATP-dependent double-strand exonuclease activity is necessary for UV-induced respiration shutoff.  相似文献   

6.
The mechanism by which recA (Srf) mutations (recA2020 and recA801) suppress the deficiency in postreplication repair shown by recF mutants of Escherichia coli was studied in UV-irradiated uvrB and uvrA recB recC sbcB cells. The recA (Srf) mutations partially suppressed the UV radiation sensitivity of uvrB recF, uvrB recF recB, and uvrA recB recC sbcB recF cells, and they partially restored the ability of uvrB recF and uvrA recB recC sbcB recF cells to repair DNA daughter-strand gaps. In addition, the recA (Srf) mutations suppressed the recF deficiency in the repair of DNA double-strand breaks in UV-irradiated uvrA recB recC sbcB recF cells. The recA2020 and recA801 mutations do not appear to affect the synthesis of UV radiation-induced proteins, nor do they appear to produce an altered RecA protein, as detected by two-dimensional gel electrophoresis. These results are consistent with the suggestion (M. R. Volkert and M. A. Hartke, J. Bacteriol. 157:498-506, 1984) that the recA (Srf) mutations do not act by affecting the induction of SOS responses; rather, they allow the RecA protein to participate in the recF-dependent postreplication repair processes without the need of the RecF protein.  相似文献   

7.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

8.
Repair of cross-linked DNA was studied in Escherichia coli strains carrying mutations affecting DNA metabolism. In wild-type cells, DNA strands cut during cross-link removal were rejoined during a subsequent incubation into high-molecular-weight molecules. This rejoining was dependent on gene products involved in genetic recombination. A close correlation was found relating recombination proficiency, the rate of strand rejoining, and formation of viable progeny after DNA cross-linking by treatment with psoralen and light. Wild-type cells and other mutants which were Rec+ (sbcB, recL, recL sbcB, recB recC sbcA, recB recC sbcB, xthA1, and xthA11) rejoined cut DNA strands at a rate of 0.8 +/- 0.1 min -1 at 37 degrees C and survived 53 to 71 cross-links per chromosome. recB, recC, recB recC, recF, or polA strains showed reduced rates of strand rejoining and survived 4 to 13 cross-links per chromosome. Recombination-deficient strains (recA, recB recC sbcB recF, recB recL) and lexA failed to rejoin DNA strands after crosslink removal and were unable to form colonies after treatments producing as few as one to two cross-links per chromosome. Strand rejoining occurred normally in cells with mutations affecting DNA replication (dnaA, danB, dnaG, and dnaE) under both permissive and nonpermissive conditions for chromosome replication. In a polA polB dnaE strain strand rejoining occurred at 32 degree C but not at 42 degree C, indicating that some DNA synthesis was required for formation of intact recombinant molecules.  相似文献   

9.
recB and recC genes of Salmonella typhimurium.   总被引:8,自引:3,他引:5       下载免费PDF全文
  相似文献   

10.
A 19-kilobase BamHI fragment encoding the recB (exonuclease V), recC (exonuclease V), ptr (protease III), thyA, and argA genes of Escherichia coli K-12 was cloned into a multicopy plasmid (pCDK3). In E. coli maxicells, the plasmid specified the synthesis of seven polypeptides of 140,000 (recC), 128,000 (recB), 110,000 (ptr), 53,000 (argA), 50,000, 33,000 (thyA), and 22,000 Mr, as well as beta-lactamase and chloramphenicol acetyltransferase. From analysis of subclones and Tn1000 insertions, it appears that the 110,000- and 50,000-Mr proteins originated from the ptr DNA coding sequence which is located between the recB and recC genes. Although recC, ptr, and recB were physically closely linked and transcribed in the same direction, they do not appear to constitute an operon. Cells carrying pCDK3 contained a 30- to 50-fold increase in exonuclease V activity, without affecting cell viability.  相似文献   

11.
Suppressors of Recb Mutations in Salmonella Typhimurium   总被引:4,自引:1,他引:3       下载免费PDF全文
N. R. Benson  J. Roth 《Genetics》1994,138(1):11-28
Using a screen that directly assesses transductional proficiency, we have isolated suppressors of recB mutations in Salmonella typhimurium. The alleles of sbcB reported here are phenotypically distinct from those isolated in Escherichia coli in that they restore recombination proficiency (Rec(+)), resistance to ultraviolet light (UV(R)), and mitomycin C resistance (MC(R)) in the absence of an accompanying sbcCD mutation. In addition the sbcB alleles reported here are co-dominant to sbcB(+). We have also isolated insertion and deletion mutants of the sbcB locus. These null mutations suppress only the UV(S) phenotype of recB mutants. We have also isolated sbcCD mutations, which map near proC. These sbcCD mutations increase the viability, recombination proficiency and MC(R) of both the transductional recombination suppressors (sbcB1 & sbcB6) and the sbcB null mutations. S. typhimurium recB sbcB1 sbcCD8 strains are 15-fold more recombination proficient than wild-type strains. The increase in transductants in these strains is accompanied by a loss of abortive transductants suggesting that these fragments are accessible to the mutant recombination apparatus. Using tandem duplications, we have constructed sbcB merodiploids and found that, in a recB mutant sbcCD(+) genetic background, the sbcB(+) allele is dominant to sbcB1 for transductional recombination but co-dominant for UV(R) and MC(R). However, in a recB sbcCD8 genetic background, the sbcB1 mutation is co-dominant to sbcB(+) for all phenotypes. Our results lead us to suggest that the SbcB and SbcCD proteins have roles in RecBCD-dependent recombination.  相似文献   

12.
Synthesis of linear plasmid multimers in Escherichia coli K-12.   总被引:40,自引:18,他引:22       下载免费PDF全文
Linear plasmid multimers were identified in extracts of recB21 recC22 strains containing derivatives of the ColE1-type plasmids pACYC184 and pBR322. A mutation in sbcB increases the proportion of plasmid DNA as linear multimers. A model to explain this is based on proposed roles of RecBC enzyme and SbcB enzyme (DNA exonuclease I) in preventing two types of rolling-circle DNA synthesis. Support for this hypothesis was obtained by derepressing synthesis of an inhibitor of RecBC enzyme and observing a difference in control of linear multimer synthesis and monomer circle replication. Reinitiation of rolling-circle DNA synthesis was proposed to occur by recA+-dependent and recA+-independent recombination events involving linear multimers. The presence of linear plasmid multimers in recB and recC mutants sheds new light on plasmid recombination frequencies in various mutant strains.  相似文献   

13.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

14.
Segments of DNA are deleted from recombinant cosmid DNAs with high frequency during propagation in standard recA Escherichia coli hosts. An attempt has been made to derive an appropriate strain of E. coli, suitable for cosmid cloning, in which such deletions do not occur. We examined the effects of a series of host recombinational mutations on the deletion process, using six independent recombinant cosmids that carry inserts of mouse, Chinese hamster, or human DNA. Various E. coli host cells carrying the recombinant cosmids were cultured serially in liquid medium, and the recombinant cosmid DNAs were extracted from the host cells and analyzed by agarose gel electrophoresis and by gene transfer of the DNAs into cultured mammalian cells. Of the mutations examined, only a recB recC sbcB recJ (or recN) quadruple combination of host mutations prevented the deletion of DNA segments. The recombinant cosmid DNAs propagated in E. coli hosts that carried this combination of mutations were functionally as well as structurally intact. We propose that the recJ (and/or recN) gene is involved in some aspect of the events that lead to deletions of cosmid DNA in a recB recC sbcB genetic background.  相似文献   

15.
The recBC nuclease (also called exonuclease V) has been partially purified from Escherichia coli K-12 strains carrying the thermosensitive recB270, recC271, and recB270 recC271 mutations. Of the multiple activities associated with the enzyme, only the adenosine 5'-triphosphate-dependent exonucleolytic hydrolysis of duplex deoxyribonucleic acid (DNA) is abnormally thermolabile. The exo- and endonucleolytic degradation of single-stranded DNA is no more thermosensitive than that catalyzed by the wild-type enzyme. These results suggest that the defects in genetic recombination, DNA repair, and the maintenance of cell viability observed in recBC mutants in vivo result primarily from the specific loss of adenosine 5'-triphosphate-dependent exonuclease active on duplex DNA.  相似文献   

16.
17.
In recb recC sbcB mutants genetic recombination is dependent upon the recF gene. recA801, recA802 and recA803 (formerly called srfA mutations) were originally isolated as mutations that suppress recombination deficiency caused by a recF mutation in a recB recC sbcB genetic background. Since the recA801 mutation also suppressed some of the UV sensitivity due to recF143, we sought to determine what DNA-repair pathways were actually being restored by the recA801 mutation in this genetic background. In this paper we show that the suppression of recF143 by recA801 does not extend to the recF143-mediated defects in induced repair of UV-damaged phages. In addition, we show that recA801 suppresses only slightly the recF143-associated defect in induced expression of the SOS-regulated muc genes of pKM101. These results suggest that recA801 suppresses primarily the RecF pathway of recombinational repair.  相似文献   

18.
Infection of Escherichia coli with phage T4 gene 2am was used to transport 3H-labeled linear duplex DNA into cells to follow its degradation in relation to the cellular genotype. In wild-type cells, 49% of the DNA was made acid soluble within 60 min; in recB or recC cells, only about 5% of the DNA was made acid soluble. Remarkably, in recD cells about 25% of the DNA was rendered acid soluble. The DNA degradation in recD cells depended on intact recB and recC genes. The degradation in recD cells was largely decreased by mutations in recJ (which eliminates the 5' single-strand-specific exonuclease coded by this gene) or xonA (which abolishes the 3' single-strand-specific exonuclease I). In a recD recJ xonA triple mutant, the degradation of linear duplex DNA was roughly at the level of a recB mutant. Results similar to those with the set of recD strains were also obtained with a recC++ mutant (in which the RecD protein is intact but does not function) and its recJ, xonA, and recJ xonA derivatives. The observations provide evidence for a recBC-dependent DNA-unwinding activity that renders unwound DNA susceptible to exonucleolytic degradation. It is proposed that the DNA-unwinding activity causes the efficient recombination, DNA repair, and SOS induction (after application of nalidixic acid) in recD mutants. The RecBC helicase indirectly detected here may have a central function in Chi-dependent recombination and in the recombinational repair of double-strand breaks by the RecBCD pathway.  相似文献   

19.
W. Y. Feng  J. B. Hays 《Genetics》1995,140(4):1175-1186
During infection of homoimmune Escherichia coli lysogens (``repressed infections'), undamaged non-replicating λ phage DNA circles undergo very little recombination. Prior UV irradiation of phages dramatically elevates recombinant frequencies, even in bacteria deficient in UvrABC-mediated excision repair. We previously reported that 80-90% of this UvrABC-independent recombination required MutHLS function and unmethylated d(GATC) sites, two hallmarks of methyl-directed mismatch repair. We now find that deficiencies in other mismatch-repair activities--UvrD helicase, exonuclease I, exonuclease VII, RecJ exonuclease--drastically reduce recombination. These effects of exonuclease deficiencies on recombination are greater than previously observed effects on mispair-provoked excision in vitro. This suggests that the exonucleases also play other roles in generation and processing of recombinagenic DNA structures. Even though dsDNA breaks are thought to be highly recombinagenic, 60% of intracellular UV-irradiated phage DNA extracted from bacteria in which recombination is low--UvrD(-), ExoI(-), ExoVII(-), or RecJ(-)--displays (near-)blunt-ended dsDNA ends (RecBCD-sensitive when deproteinized). In contrast, only bacteria showing high recombination (Mut(+) UvrD(+) Exo(+)) generate single-stranded regions in nonreplicating UV-irradiated DNA. Both recF and recB recC mutations strikingly reduce recombination (almost as much as a recF recB recC triple mutation), suggesting critical requirements for both RecF and RecBCD activity. The mismatch repair system may thus process UV-irradiated DNA so as to initiate more than one recombination pathway.  相似文献   

20.
Summary Colony forming ability of Escherichia coli strains carrying the rnh-339::cat mutant allele is strongly dependent on the recBCD and sbcB genes. A mutation inactivating either the RecBCD nuclease or exonuclease I (sbcB) is sufficient to restrict severely the efficiency of plating of strains carrying the rnh-339::cat mutation. Combining a non-lethal temperature-sensitive mutation in the RecBCD nuclease, recB270 (Ts) or recC271 (Ts), with rnh-339::cat renders strains temperature sensitive for growth, even though rnh + strains with the recB270 (Ts) or recC271 (Ts) alleles are viable at 42 C. The recombinational functions of the RecBCD nuclease can be excluded as the source of lethality on the basis of the following observations. Introduction of a recombination proficient, exonuclease defective recD1009 allele or production of the phage GamS protein (an inhibitor of the RecBCD exonuclease activity) in an rnh-339::cat strain dramatically delays or impairs the ability of such strains to form colonies. Restoration of recombination proficiency by inclusion of an sbcB15 mutation with recB21 recC22 mutations does not restore the ability of the rnh-339::cat mutant strains to plate normally. A recBCD + strain bearing the rnh-339::cat and sbcB15 mutations forms very few visible colonies after 24 h but forms colonies at normal frequencies after 48 h of incubation. Finally, plating efficiencies of strains are unaffected when the RecBCD recombination pathway is inactivated by introduction of recA56 into an rnh-339::cat strain. These results imply that the defective growth of rnh-339::cat recBCD strains is due to a defect in repair and not recombination mediated by either the RecBCD or the RecF pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号