首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anterior end or head of a devescovinid flagellate from termites continually rotates in a clockwise direction relative to the rest of the cell. Previous laser microbeam experiments showed that rotational motility is caused by a noncontractile axostyle complex which runs from the head through the cell body and generates torque along its length. We report here success in obtaining glycerinated cell models of the rotary axostyle which, upon addition of ATP, undergo reactivation and exhibit rotational movements similar to those observed in vivo. Reactivation of rotational motility and flagellar beating of the models requires ATP or ADP and is competitively inhibited by nonhydrolyzable ATP analogs (AMP-PNP and ATP-gamma-S). N-ethylmaleimide, p- hydroxymercuribenzoate, and mersalyl acid also blocked reactivation of both the rotary axostyle and flagella. Vanadate and erythro-9-[3-(2- hydroxynonyl)]-adenine (EHNA) selectively inhibited flagellar reactivation without effecting rotational motility. These results, together with previous ultrastructural findings, suggest that the rotary axostyle does not operate by a dynein-based mechanism but may be driven by an actomyosin system with a circular arrangement of interacting elements.  相似文献   

2.
Swimming cells of Sinorhizobium meliloti are driven by flagella that rotate only clockwise. They can modulate rotary speed (achieve chemokinesis) and reorient the swimming path by slowing flagellar rotation. The flagellar motor is energized by proton motive force, and torque is generated by electrostatic interactions at the rotor/stator (FliG/MotA-MotB) interface. Like the Escherichia coli flagellar motor that switches between counterclockwise and clockwise rotation, the S. meliloti rotary motor depends on electrostatic interactions between conserved charged residues, namely, Arg294 and Glu302 (FliG) and Arg90, Glu98 and Glu150 (MotA). Unlike in E. coli, however, Glu150 is essential for torque generation, whereas residues Arg90 and Glu98 are crucial for the chemotaxis-controlled variation of rotary speed. Substitutions of either Arg90 or Glu98 by charge-neutralizing residues or even by their smaller, charge-maintaining isologues, lysine and aspartate, resulted in top-speed flagellar rotation and decreased potential to slow down in response to tactic signalling (chemokinesis-defective mutants). The data infer a novel mechanism of flagellar speed control by electrostatic forces acting at the rotor/stator interface. These features have been integrated into a working model of the speed-modulating rotary motor.  相似文献   

3.
SYNOPSIS. Culture forms and lumen-dwelling phases of the ameboflagellate Histomonas meleagridis, which are structurally indistinguishable from each other, have a single flagellum. Their well-developed pelta is connected to the anterior segment of the broad, spatulate axostylar capitulum, applied to the left-ventral surface of the nearly spheroid or somewhat ellipsoid or ovoid nucleus. The capitulum narrows into a very slender axostylar trunk that tapers to a fine point and does not project beyond the body surface. The parabasal apparatus consists of a V-shaped parabasal body and a large parabasal filament. A new flagellum appears early during division and soon approaches its full length. The 2 flagella persist thruout division and each becomes the locomotory organelle of a daughter histomonad. The arms of the parental parabasal body appear to separate, each going to 1 of the daughter mastigont systems; some parabasal material is lost early in division. The 2nd arm is regenerated in each daughter parabasal body. The large parabasal filament seems not to be retained in the parental mastigont system, and new filaments are seen at both poles before 2 daughter nuclei are formed. The old axostyle degenerates from the anterior toward the posterior end; at the same time lamellar primordia of the daughter pelta-axostyle complexes appear in the separating mastigont systems that are connected by an extranuclear spindle during the entire division process. The structure and taxonomic status of H. meleagridis are discussed in the light of this and previous studies.  相似文献   

4.
An amitochondriate trichomonad cell of the family Devescovinidae (Class Parabasalia), helped demonstrate the fluid model of lipoprotein cell membranes. This wood-ingesting symbiont in the hindgut of the dry wood-eating termite Cryptotermes cavifrons is informally known to cell biologists as "Rubberneckia". As the microtubular axo-style complex generates force causing clockwise movement of the entire anterior portion of the cell at the shear zone the protist displays "head" rotation. Studies by phase contrast and videomicroscopy of live cells, of whole mounts by scanning, and thin sections by transmission electron microscopy extend the observations of Tamm and Tamm [24-26] and Tamm [19-23]. Habitat, cell shape, size, nuclear features, parabasal apparatus and other morphological details permit the assignment of "Rubberneckia" to Kirby's cosmopolitan genus Caduceia. This large-sized devescovinid has distinctive parabasal gyres, an axostylar rotary, motor, and regularly-associated nonflagellated, fusiform and flagellated rod epibiotic surface bacteria. In addition to regularly aligned epibionts intranuclear and endocytoplasmic bacteria are abundant and hydrogenosomes are Present. "Rubberneckia" is compared here to the other seven species of Caduceia. Since it is clearly sufficiently distinctive to warrant new species status, we named it C. versatilis.  相似文献   

5.
Torque generated by the bacterial flagellar motor close to stall.   总被引:4,自引:2,他引:2       下载免费PDF全文
In earlier work in which electrorotation was used to apply external torque to tethered cells of the bacterium Escherichia coli, it was found that the torque required to force flagellar motors backward was considerably larger than the torque required to stop them. That is, there appeared to be substantial barrier to backward rotation. Here, we show that in most, possibly all, cases this barrier is an artifact due to angular variation of the torque applied by electrorotation, of the motor torque, or both; the motor torque appears to be independent to speed or to vary linearly with speed up to speeds of tens of Hertz, in either direction. However, motors often break catastrophically when driven backward, so backward rotation is not equivalent to forward rotation. Also, cells can rotate backward while stalled, either in randomly timed jumps of 180 degrees or very slowly and smoothly. When cells rotate slowly and smoothly backward, the motor takes several seconds to recover after electrorotation is stopped, suggesting that some form of reversible damage has occurred. These findings do not affect the interpretation of electrorotation experiments in which motors are driven rapidly forward.  相似文献   

6.
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.  相似文献   

7.
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.  相似文献   

8.
A rod-like axostyle complex turns the anterior end of a termite flagellate, including the plasma membrane, continually in the same direction relative to the rest of the cell at speeds up to approximately 1 Hz. This motility provides direct visual evidence for the fluid nature of cell membranes. Torque is generated along the length of the axostyle complex by an unknown mechanism. Here I describe findings not published before and promising experiments that may help to solve this remarkable motility.  相似文献   

9.
Bacterial flagella are driven by a rotary motor that is energized by an electrochemical ion gradient across the cell membrane. In this study the torque generated by the flagellar motor was measured in tethered cells of a smooth-swimming Escherichia coli strain by using rotating electric fields to determine the relationship between the torque and speed over a wide range. By measuring the electric current applied to the sample cell and combining the data obtained at different viscosities, the torque of the flagellar motor was estimated up to 55 Hz, and also at negative rotation rates. By this method we have found that the torque of the flagellar motor linearly decreases with rotation rate from negative through positive rate of rotation. In addition, the dependence of torque upon temperature was also investigated. We showed that torque at the high speeds encountered in swimming cells had a much steeper dependence on temperature that at the low speeds encountered in tethered cells. From these results, the activation energy of the proton transfer reaction in the torque-generating unit was calculated to be about 7.0 x 10(-20) J.  相似文献   

10.
The rhythmic movement of the microtubular axostyle in the termite flagellate, Pyrsonympha vertens, was analyzed with polarization and electron microscopy. The protozoan axostyle is birefringent as a result of the semi-crystalline alignment of approximately 2,000 microtubules. The birefringence of the organelle permits analysis of the beat pattern in vivo. Modifications of the beat pattern were achieved with visible and UV microbeam irradiation. The beating axostyle is helically twisted and has two principal movements, one resembling ciliary and the other flagellar beating. The anterior portion of the beating axostyle has effective and recovery phases with each beat thereby simulating the flexural motion of a beating cilium. Undulations develop from the flexural flipping motion of the anterior segment and travel along the axostyle like flagellar waves. The shape of the waves differs from that of flagellar waves, however, and are described as sawtooth waves. The propagating sawtooth waves contain a sharp bend, approximately 3 micron in length, made up of two opposing flexures followed by a straight helical segment approximately 23 micron long. The average wavelength is approximately 25 micron, and three to four sawtooth waves travel along the axostyle at one time. The bends are nearly planar and can travel in either direction along the axostyle with equal velocity. At temperatures between 5 degrees and 30 degrees C, one sees a proportionate increase or decrease in wave propagation velocity as the temperature is raised or lowered. Beating stops below 5 degrees C but will resume if the preparation is warmed. A microbeam of visible light shone on a small segment of the axostyle causes the typical sawtooth waves to transform into short sine-like waves that accumulate in the area irradiated. Waves entering the affected region appear to stimulate waves already accumulated there to move, and waves that emerge take on the normal sawtooth wave pattern. The effective wavelengths of visible light capable of modifying the wave pattern is in the blue region of the spectrum. The axostyle is severed when irradiated with an intense microbeam of UV light. Short segments of axostyle produced by severing it at two places with a UV microbeam can curl upon themselves into shapes resembling lockwashers. We propose that the sawtooth waves in the axostyle of P. vertens are generated by interrow cross-bridges which are active in the straight regions.  相似文献   

11.
Cochlosoma anatis Kotlán (Zoomastigophorea, Retortamonadida, Cochlosomidae), isolated from the large intestines of domestic Rouen ducks, and Cochlosoma soricis n. sp., isolated from the small intestines of shrews, were observed by light and scanning electron microscopy. In both organisms, a single flagellum inserted on the dorsal surface at the same level as the insertion of 4 other flagella on the ventral surface. The 4 ventro-lateral flagella emerged from the left side of the anterior attachment disk below the margin and just above the lateral groove which extended the length of the organism. A 6th flagellum emerged from the margin of the attachment disk. The proximal ends of the flagella formed a bundle with the distal ends becoming unraveled like a rope. During motility, the bundle portion extended straight out from the cell and the free ends of the flagella produced a whipping motion. In C. anatis , the dorsal surface was covered with knob-like lumps and small pits and the cells had an axostyle that emerged slightly to the right of the midline in the posterior 1/3 of the body. The axostylar tip was shorter and thicker than the flagella and in most cells it also had an irregular, knobby appearance. The irregular cell surface and axostyle were absent from C. soricis. The margin of the attachment disk curved toward the center and terminated in C. anatis as a straight edge while in C. soricis it continued as a spiral. Indentations in the mucosal brush border similar to those produced by Giardia , but distinctly belonging to Cochlosoma , were interpreted as points of attachment to the host.  相似文献   

12.
F1-ATPase is an enzyme acting as a rotary nano-motor. During catalysis subunits of this enzyme complex rotate relative to other parts of the enzyme. Here we demonstrate that the combination of two input stimuli causes stop of motor rotation. Application of either individual stimulus did not significantly influence motor motion. These findings may contribute to the development of logic gates using single biological motor molecules.  相似文献   

13.
Cochlosoma anatis Kotlán (Zoomastigophorea, Retortamonadida, Cochlosomidae), isolated from the large intestines of domestic Rouen ducks, and Cochlosoma soricis n. sp., isolated from the small intestines of shrews, were observed by light and scanning electron microscopy. In both organisms, a single flagellum inserted on the dorsal surface at the same level as the insertion of 4 other flagella on the ventral surface. The 4 ventro-lateral flagella emerged from the left side of the anterior attachment disk below the margin and just above the lateral groove which extended the length of the organism. A 6th flagellum emerged from the margin of the attachment disk. The proximal ends of the flagella formed a bundle with the distal ends becoming unraveled like a rope. During motility, the bundle portion extended straight out from the cell and the free ends of the flagella produced a whipping motion. In C. anatis, the dorsal surface was covered with knob-like lumps and small pits and the cells had an axostyle that emerged slightly to the right of the midline in the posterior 1/3 of the body. The axostylar tip was shorter and thicker than the flagella and in most cells it also had an irregular, knobby appearance. The irregular cell surface and axostyle were absent from C. soricis. The margin of the attachment disk curved toward the center and terminated in C. anatis as a straight edge while in C. soricis it continued as a spiral. Indentations in the mucosal brush border similar to those produced by Giardia, but distinctly belonging to Cochlosoma, were interpreted as points of attachment to the host.  相似文献   

14.
Mechanical limits of bacterial flagellar motors probed by electrorotation.   总被引:3,自引:3,他引:0  
We used the technique of electrorotation to apply steadily increasing external torque to tethered cells of the bacterium Escherichia coli while continuously recording the speed of cell rotation. We found that the bacterial flagellar motor generates constant torque when rotating forward at low speeds and constant but considerably higher torque when rotating backward. At intermediate torques, the motor stalls. The torque-speed relationship is the same in both directional modes of switching motors. Motors forced backward usually break, either suddenly and irreversibly or progressively. Motors broken progressively rotate predominantly at integral multiples of a unitary speed during the course of both breaking and subsequent recovery, as expected if progressive breaking affects individual torque-generating units. Torque is reduced by the same factor at all speeds in partially broken motors, implying that the torque-speed relationship is a property of the individual torque-generating units.  相似文献   

15.
A trichomonad flagellate, Tritrichomonas mobilensis n. sp., is described from the large intestine of the squirrel monkey, Saimiri boliviensis boliviensis. The organism has a lanceolate body 7-10.5 micrometers in length; a well developed undulating membrane; a stout, tubular axostyle with periaxostylar rings that terminate in a cone-shaped segment projecting from the posterior end of the cell; and a moderately wide costa. The anterior flagella are about as long as the body, and the recurrent flagellum is of the acroneme type. All its characteristics suggest that the new species belongs in the Tritrichomonas augusta type of the subfamily Tritrichomonadinae.  相似文献   

16.
A bacterial flagellar motor is an energy transducing molecular machine which shows some attractive characteristics. First, this motor is driven by a protonmotive force (PMF) across the membrane, two components of which, electric potential delta psi and chemical potential -(2.3RT/F)delta pH, are equivalently transduced to the mechanical work of the motor rotation. Second, a PMF threshold for rotation is observed. Third, this motor can rotate reversibly either counterclockwise (CCW) or clockwise (CW) at almost the same speed. To clarify the osmomechanical coupling of this motor, these characteristics must be explained consistently at the molecular level. In this paper, in order to allow quantitative analyses of the above characteristics, a theoretical model of a bacterial flagellar motor is constructed assuming that the torque generating sites are electrodes which can be charged by protons and that the electrostatic interaction between the electrodes generates the rotation torque. Electrode reaction reasonably derives the equivalence of delta psi and -(2.3RT/F)delta pH. In this model, rates of charging and discharging of protons are influenced by the motor rotation rate, so that the torque generating sites co-operatively work through the motor rotation. We named this kind of co-operativity among them "dynamic co-operativity" in torque generation. This co-operativity causes autocatalytic generation of motor torque and the existence of the rotation threshold. In this model, the appearance of the stable rotational states can be described by phase transition caused by the dynamic co-operativity among torque generating sites. According to this model, the flagellar motor has two stable rotational states corresponding to CCW and CW, which show the same torques. The motor selects one direction from them to rotate, and that is self-organization of rotational motion. Interpretation of the transition between the two stable rotational states as the chemotactic reversals of the flagellar motor is also discussed.  相似文献   

17.
18.
Flagellated ectosymbiotic bacteria propel a eucaryotic cell   总被引:5,自引:2,他引:3       下载免费PDF全文
A devescovinid flagellate from termites exhibits rapid gliding movements only when in close contact with other cells or with a substrate. Locomotion is powered not by the cell's own flagella nor by its remarkable rotary axostyle, but by the flagella of thousands of rod bacteria which live on its surface. That the ectosymbiotic bacteria actually propel the protozoan was shown by the following: (a) the bacteria, which lie in specialized pockets of the host membrane, bear typical procaryotic flagella on their exposed surface; (b) gliding continues when the devescovinid's own flagella and rotary axostyle are inactivated; (c) agents which inhibit bacterial flagellar motility, but not the protozoan's motile systems, stop gliding movements; (d) isolated vesicles derived from the surface of the devescovinid rotate at speeds dependent on the number of rod bacteria still attached; (e) individual rod bacteria can move independently over the surface of compressed cells; and (f) wave propagation by the flagellar bundles of the ectosymbiotic bacteria is visualized directly by video-enhanced polarization microscopy. Proximity to solid boundaries may be required to align the flagellar bundles of adjacent bacteria in the same direction, and/or to increase their propulsive efficiency (wall effect). This motility-linked symbiosis resembles the association of locomotory spirochetes with the Australian termite flagellate Mixotricha (Cleveland, L. R., and A. V. Grimstone, 1964, Proc. R. Soc. Lond. B Biol. Sci., 159:668-686), except that in our case propulsion is provided by bacterial flagella themselves. Since bacterial flagella rotate, an additional novelty of this system is that the surface bearing the procaryotic rotary motors is turned by the eucaryotic rotary motor within.  相似文献   

19.
We previously described a remarkable type of cell motility that provided direct, visual evidence for the fluid nature of cell membranes. The movement involved continual, unidirectional rotation of one part of a protozoan, including the plasma membrane and cytoplasmic organelles, in relation to a neighbouring part. The cell membrane in the 'shear zone' appeared continuous with that of the rest of the cell. The rotary motor consisted, at least in part, of a non-contractile, microtubular axostyle which extended centrally through the cell. The protozoan was a devescovinid flagellate found in the hindgut of a Florida termite. In this paper, we have confirmed earlier reports of this type of motility in other kinds of devescovinids from Australian termites. By demonstrating continuity of the plasma membrane in the shear zone of the Australian devescovinids as well, we have obtained additional examples that provide direct, visual evidence for fluid membranes. A comparative analysis of rotational motility in various devescovinids revealed 2 different kinds of rotary mechanisms. Hyperdevescovina probably have an internal motor, in which one part of the cell exerts forces against another part, as in the Florida termite devescovinid. Devescovina species, on the other hand, have an external motor, in which flagellar and/or papillar movements exert forces against the surrounding medium. The structure of the axostyle in different devescovinids was compared, and its role in rotational motility discussed with respect to the behavioural data.  相似文献   

20.
ABSTRACT. A trichomonad flagellate, Tritrichomonas mobilensis n. sp., is described from the large intestine of the squirrel monkey, Saimiri boliviensis boliviensis. The organism has a lanceolate body 7–10.5 μm in length; a well developed undulating membrane; a stout, tubular axostyle with periaxostylar rings that terminate in a cone-shaped segment projecting from the posterior end of the cell; and a moderately wide costa. The anterior flagella are about as long as the body, and the recurrent flagellum is of the acroneme type. All its characteristics suggest that the new species belongs in the Tritrichomonas augusta type of the subfamily Tritrichomonadinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号