首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Sulfatide-binding proteins   总被引:4,自引:0,他引:4  
Sulfatides (galactosyl ceramide-I3-sulfate) and other sulfated glycolipids are found in many tissues. The cell adhesion proteins laminin, thrombospondin, and von Willebrand factor bind specifically to sulfated glycolipids. Methods for characterizing the specificity of these interactions using surface-adsorbed glycolipids are reviewed. The three proteins do not bind to other anionic lipids, including gangliosides, phospholipids, or cholesterol 3-sulfate. Binding to sulfatides is saturable and of relatively high affinity. Relative binding avidity depends on the oligosaccharide structure of the glycolipids. Binding to sulfatides in erythrocyte membranes can account for the hemagglutinating activities of the three proteins and may play a role in the interactions of these proteins with other cell types.  相似文献   

2.
V Ginsburg  D D Roberts 《Biochimie》1988,70(11):1651-1659
The adhesive glycoproteins laminin, thrombospondin and von Willebrand's factor bind specifically and with high affinity to sulfated glycolipids, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The 3 proteins differ, however, in the effect of sulfated polysaccharides on their binding to sulfatides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand's factor, suggesting the involvement of laminin or thrombospondin or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed onto plastic promotes the attachment and spreading of G361 melanoma cells. Interestingly, fucoidan and an antibody directed against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed onto plastic also promote attachment and spreading of G361 melanoma cells. Direct adhesion of G361 cells requires high densities of sulfatide. In the presence of laminin, however, specific adhesion of G361 cells to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin mediates adhesion by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed onto the plastic. Although thrombospondin binds to sulfatide and to G361 cells, it does not enhance but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycoconjugates participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

3.
Sulfated glycolipids and cell adhesion   总被引:6,自引:0,他引:6  
The adhesive glycoproteins laminin, thrombospondin, and von Willebrand factor bind specifically and with high affinity to sulfatides, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The three proteins differ, however, in the inhibition of their binding to sulfatides by sulfated polysaccharides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand factor, suggesting the involvement of laminin or thrombospondin, or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed on plastic promotes the attachment and spreading of some melanoma cells. Interestingly, fucoidan and an antibody against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment to thrombospondin-coated surfaces. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed on plastic also promote attachment and spreading of some cultured cell lines. Direct adhesion of melanoma cells requires high densities of adsorbed sulfatide. In the presence of laminin, however, specific adhesion of some cell types to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin is mediating adhesion by crosslinking receptors on the cell surface to sulfatide adsorbed on the plastic. Although thrombospondin also binds to sulfatides and to melanoma cells, it does not enhance but rather inhibits direct and laminin-dependent melanoma cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycolipids can participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

4.
The human platelet glycoprotein thrombospondin (TSP) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). Binding of 125I-TSP to lipids from sheep and human erythrocytes and human platelets resolved on thin layer chromatograms indicates that sulfatides are the only lipids in the membrane which bind TSP. Binding to less than 2 ng of sulfatide could be detected. TSP failed to bind to other purified lipids including cholesterol 3-sulfate, phospholipids, neutral glycolipids, and gangliosides. Binding of 125I-TSP was inhibited by unlabeled TSP, by low pH, and by reduction of intersubunit disulfide bonds with dithiothreitol. A monoclonal antibody against TSP (A2.5), which inhibits hemagglutination and agglutination of fixed activated platelets by TSP, strongly inhibited TSP binding to sulfatides. A second monoclonal antibody (C6.7), which inhibits hemagglutination and aggregation of thrombin-activated live platelets, weakly inhibited sulfatide binding. Binding was inhibited by high ionic strength and by some monosaccharide sulfates including methyl-alpha-D-GlcNAc-3-sulfate. Neutral sugars did not inhibit. Fucoidan, a sulfated fucan, strongly inhibited binding with 50% inhibition at 0.3 micrograms/ml fucoidan. Other sulfated polysaccharides including heparin and dextran sulfates were good inhibitors, whereas hyaluronic acid and keratan sulfate were very weak.  相似文献   

5.
Midkine is a heparin-binding polypeptide which is implicated in the control of development and repair of various tissues. Recognition of sulfate groups in glycosaminoglycans is important for its function. To elucidate further its mechanism of action, the interactions of midkine with sulfated glycolipids were studied. Of various glycolipids and lipids examined, midkine bound strongly to sulfatide and cholesterol-3-sulfate (CHO-3-SO4) in a dose-dependent manner but failed to bind to other standard glycolipids and lipids. The properties of midkine binding to sulfatide and to CHO-3-SO4 differed in their sensitivity to inhibition by anionic polysaccharides, salt concentration and unlabeled midkine. Heparin inhibited midkine binding to sulfatide but weakly inhibited its binding to CHO-3-SO4. Liposomes bearing sulfatide carried out significant interactions with immobilized midkine, whereas those bearing CHO-3-SO4 did not. Incorporation of sulfatide into 32D cells and trypsinized COS cells enhanced 125I-labelled midkine binding, whereas incorporation of ganglioside or galactosylceramide had no effect. Furthermore, sulfatide-incorporated cells enhanced cell attachment to midkine-coated coverslips. These results indicate that midkine binds to sulfatide under physiological conditions and the midkine-sulfatide interaction may be important in controlling cell attachment.  相似文献   

6.
Sulfoglucuronyl Glycolipids Bind Laminin   总被引:5,自引:1,他引:4  
Previous studies have shown that HNK-1 antibody reactive glycoconjugates, including the glycolipids 3-sulfoglucuronylneolactotetraosylceramide (SGGL-1) and 3-sulfoglucuronylneolactohexaosylceramide (SGGL-2), are temporally and spatially regulated antigens in the developing mammalian cortex. Extracellular matrix glycoprotein laminin is involved in cell adhesion by interacting with cell surface components and also promotes neurite outgrowth. Laminin has been shown to bind sulfatide. The interaction of sulfated glycolipids SGGL-1 and SGGL-2 with laminin was studied by employing a solid-phase radioimmunoassay and by HPTLC-immunoblotting. Laminin binding was detected with anti-laminin antibodies followed by 125I-labelled Protein A and autoradiography. Laminin binds SGGL-1 and SGGL-2, besides sulfatide, but does not bind significantly gangliosides and neutral glycolipids. The binding of SGGLs to laminin was two to three times less compared to sulfatide when compared on a molar basis. Desulfation of SGGLs and sulfatide by mild acid treatment resulted in abolition of laminin binding. On the other hand, chemical modification of glucuronic acid moiety by either esterification or reduction of the carboxyl group had no effect. This showed that the sulfate group was essential for laminin binding. Of the various glycosaminoglycans tested, only heparin inhibited the binding of laminin to SGGLs and sulfatide in a dose-dependent manner. This indicated that SGGLs and sulfatide bind to the heparin binding site present in the laminin molecule. The availability of HNK-1 reactive glycolipids and glycoproteins such as SGGLs and several neural cell adhesion molecules to bind laminin at critical stages of neural development may serve as important physiological signals.  相似文献   

7.
von Willebrand factor binds specifically to sulfated glycolipids   总被引:5,自引:0,他引:5  
The human plasma glycoprotein Factor VIII/von Willebrand factor (vWF) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). vWF does not bind to gangliosides, neutral glycolipids, phospholipids, or cholesterol 3-sulfate. Although the largest oligomers of vWF bind preferentially to sulfatides, vWF monomers and dimers also bind but with reduced affinity. vWF binding is inhibited at high ionic strength or low pH, by some sulfated polysaccharides and by antibodies to vWF. Binding of vWF to sulfatides is probably responsible for its agglutination of aldehyde-fixed erythrocytes and may play a role in vWF-induced platelet adhesion or platelet aggregation.  相似文献   

8.
Two human mAbs (2F5 and 4E10), originally derived from HIV-1-infected patients, are important, but rare, mAbs that exhibit broad cross-clade neutralizing activities against HIV-1. In addition to peptide sequences on the gp41 envelope protein, both antibodies reportedly also bound specifically to several phospholipid antigens. However, the phospholipid binding property of 2F5 has been disputed and, because of uncertainly regarding phospholipid binding, the modeling of neutralizing mechanisms has been difficult. To explore this issue, we examined the binding of 4E10 and 2F5 to a broad range of lipid antigens by ELISA. 4E10 and 2F5 both bound to a variety of purified phospholipids, and 4E10 bound, but 2F5 did not bind, to cardiolipin. Both mAbs also bound to a sulfated glycolipid, sulfogalactosyl ceramide (sulfatide), and to two neutral glycolipids, galactosyl ceramide and glucosyl ceramide, but not to other galactosyl glycolipids. 4E10, but not 2F5, also bound to cholesterol, although both mAbs bound to squalene. Interestingly, 4E10, but not 2F5, exhibited striking binding to lipid A, the lipid moiety of Gram-negative bacterial lipopolysaccharide. The binding properties of 4E10 to phospholipids, sulfatide, cholesterol, squalene, and lipid A were similar to those of a neutralizing murine mAb (WR304) induced by liposomes containing phosphatidylinositol phosphate and lipid A, although WR304 did not bind to neutral glycolipids. The discovery of a binding specificity of 4E10 for lipid A, a widely used vaccine adjuvant, suggests that innate immunity stimulated by lipid A could have played a role for induction of multispecific antibodies that simultaneously recognize both HIV-1 protein and lipid antigens.  相似文献   

9.
The full assignment of 1H and 13C NMR signals of galactosylceramide 3-sulfate (galactosyl sulfatide) and 1H signals of galactosylceramide 6-sulfate was achieved by using 1H-1H DQF-COSY and 1H-13C heteronuclear COSY. Analyses were performed on a mixture of galactosyl sulfatides with four representative ceramide types consisting of a combination of non-hydroxy or 2-hydroxy fatty acids and sphingenine or 4D-hydroxysphinganine (trihydroxysphinganine) as the long-chain bases. The 1H and 13C NMR parameters of galactosyl sulfatide with 4-hydroxysphinganine as well as 13C signals of complex lipids with 4-hydroxysphinganine were elucidated for the first time. Not only sulfation of the galactosyl residue, but also modification of the aglycon, including hydroxylation of fatty acids and hydration of the double bond in sphingoid bases, altered the chemical shifts substantially. In addition, the unique long-range coupling constants, 4J(H,H) and 5J(H,H), in the galactosyl residue of galactosyl sulfatide could be determined.  相似文献   

10.
Properdin, which stabilizes the C3 convertase during the activation of the alternate complement pathway, contains amino acid sequence homologies with several proteins that bind sulfated glycoconjugates, including the adhesive protein thrombospondin and the leech salivary protein antistasin. This homology is based around the sequence Cys-Ser-Val-Thr-Cys-Gly-X-Gly-X-X-X-Arg-X-Arg. To determine if these homologous amino acid sequences are sulfated glycoconjugate-binding domains, purified native properdin, as well as activated properdin (a high molecular weight form of properdin), were examined for binding to various lipids in solid phase radioimmunoassays. Of the lipids tested, both native and activated properdin bind with high affinity only to sulfatide [Gal(3-SO4)beta 1-1 Cer], but not to comparable levels of cholesterol-3-SO4, or several neutral glycolipids, gangliosides, and phospholipids. Sulfatide binding by both forms of properdin is inhibited by dextran sulfate (Mr = 500,000) or fucoidan, whereas only the activated form is inhibited by dextran sulfate (Mr = 5,000) or heparin. Comparable levels of chondroitin sulfates A, B, and C, keratan sulfate, dextran (Mr = 90,000), or hyaluronic acid do not inhibit binding. Taken together, these data suggest that properdin, like antistasin and thrombospondin, binds sulfated glycoconjugates and supports the conclusion that the homologous sequences are sulfated glycoconjugate-binding domains.  相似文献   

11.
A laminin-binding peptide (peptide G), predicted from the cDNA sequence for a 33-kDa protein related to the 67-kDa laminin receptor, specifically inhibits binding of laminin to heparin and sulfatide. Since the peptide binds directly to heparin and inhibits interaction of another heparin-binding protein with the same sulfated ligands, this inhibition is due to direct competition for binding to sulfated glycoconjugates rather than an indirect effect of interaction with the binding site on laminin for the 67-kDa receptor. Direct binding of laminin to the peptide is also inhibited by heparin. This interaction may result from contamination of the laminin with heparan sulfate, as binding is enhanced by the addition of substoichiometric amounts of heparin but inhibited by excess heparin and two heparin-binding proteins. Furthermore, laminin binds more avidly to a heparin-binding peptide derived from thrombospondin than to the putative receptor peptide. Adhesion of A2058 melanoma cells on immobilized peptide G is also heparin-dependent, whereas adhesion of the cells on laminin is not. Antibodies to the beta 1-integrin chain or laminin block adhesion of the melanoma cells to laminin but not to peptide G. Thus, the reported inhibition of melanoma cell adhesion to endothelial cells by peptide G may result from inhibition of binding of laminin or other proteins to sulfated glycoconjugate receptors rather than from specific inhibition of laminin binding to the 67-kDa receptor.  相似文献   

12.
A virulent strain of Mycoplasma pneumoniae was metabolically labeled with [3H]palmitate and studied for binding to glycolipids and to WiDr human colon adenocarcinoma cells. The organism binds strongly to sulfatide and other sulfated glycolipids, such as seminolipid and lactosylsulfatide which all contain terminal Gal(3SO4) beta 1-residues and weakly to some neolactoseries neutral glycolipids. M. pneumoniae do not bind gangliosides including the sialylneolacto-series and other neutral glycolipids that were tested. Only metabolically active M. pneumoniae cells bind to sulfatide, as binding is maximal in RPMI medium at 37 degrees C and almost completely abolished in nutrient-deficient medium or by keeping the cells at 4 degrees C. Dextran sulfate but not other sulfated or anionic polysaccharides at 10 micrograms/ml completely inhibits binding of M. pneumoniae to purified sulfatide. Dextran sulfate does not inhibit binding to the neolacto-series neutral glycolipids. Dextran sulfate partially inhibits adhesion of M. pneumoniae to cultured human colon adenocarcinoma cells (WiDr). The biological relevance of these data is suggested by our finding that sulfatide occurs in large amounts in human trachea, lung, and WiDr cells. Thus, there are at least two distinct receptors that mediate binding of M. pneumoniae to cells: glycolipids containing terminal Gal(3SO4) beta 1-residues as reported here, and glycoproteins containing terminal NeuAc alpha 2-3Gal beta 1-4GlcNAc sequences (Roberts, D. D., Olson, L. D., Barile, M. F., Ginsburg, V., and Krivan, H. C. (1989) J. Biol. Chem. 264, 9289-9293).  相似文献   

13.
The binding of pulmonary surfactant protein A (SP-A) to glycolipids was examined in the present study. The direct binding of SP-A on a thin-layer chromatogram was visualized using 125I-SP-A as a probe. 125I-SP-A bound to galactosylceramide and asialo-GM2, but failed to exhibit significant binding to GM1, GM2, asialo-GM1, sulfatide, and Forssman antigen. The study of 125I-SP-A binding to glycolipids coated onto microtiter wells also revealed that SP-A bound to galactosylceramide and asialo-GM2. SP-A bound to galactosylceramides with non-hydroxy or hydroxy fatty acids, but showed no binding to either glucosylceramide or galactosylsphingosine. Excess native SP-A competed with 125I-SP-A for the binding to asialo-GM2 and galactosylceramide. Specific antibody to rat SP-A inhibited 125I-SP-A binding to glycolipids. In spite of chelation of Ca2+ with EDTA or EGTA, SP-A retained a significant binding to glycolipids. Inclusion of excess monosaccharides in the binding buffer reduced the glycolipid binding of SP-A, but failed to achieve complete abolishment. The oligosaccharide isolated from asialo-GM2 is also effective at reducing 125I-SP-A binding to the solid-phase asialo-GM2. From these data, we conclude that SP-A binds to galactosylceramide and asialo-GM2, and that both saccharide and ceramide moieties in the glycolipid molecule are important for the binding of SP-A to glycolipids.  相似文献   

14.
Circumsporozoite (CS) proteins, which densely coat malaria (Plasmodia) sporozoites, contain an amino acid sequence that is homologous to segments in other proteins which bind specifically to sulfated glycoconjugates. The presence of this homology suggests that sporozoites and CS proteins may also bind sulfated glycoconjugates. To test this hypothesis, recombinant P. yoelii CS protein was examined for binding to sulfated glycoconjugate-Sepharoses. CS protein bound avidly to heparin-, fucoidan-, and dextran sulfate-Sepharose, but bound comparatively poorly to chondroitin sulfate A- or C-Sepharose. CS protein also bound with significantly lower affinity to a heparan sulfate biosynthesis-deficient mutant cell line compared with the wild-type line, consistent with the possibility that the protein also binds to sulfated glycoconjugates on the surfaces of cells. This possibility is consistent with the observation that CS protein binding to hepatocytes, cells invaded by sporozoites during the primary stage of malaria infection, was inhibited by fucoidan, pentosan polysulfate, and heparin. The effects of sulfated glycoconjugates on sporozoite infectivity were also determined. P. berghei sporozoites bound specifically to sulfatide (galactosyl[3-sulfate]beta 1-1ceramide), but not to comparable levels of cholesterol-3-sulfate, or several examples of neutral glycosphingolipids, gangliosides, or phospholipids. Sporozoite invasion into hepatocytes was inhibited by fucoidan, heparin, and dextran sulfate, paralleling the observed binding of CS protein to the corresponding Sepharose derivatives. These sulfated glycoconjugates blocked invasion by inhibiting an event occurring within 3 h of combining sporozoites and hepatocytes. Sporozoite infectivity in mice was significantly inhibited by dextran sulfate 500,000 and fucoidan. Taken together, these data indicate that CS proteins bind selectively to certain sulfated glycoconjugates, that sporozoite infectivity can be inhibited by such compounds, and that invasion of host hepatocytes by sporozoites may involve interactions with these types of compounds.  相似文献   

15.
ADAMTS13, a metalloprotease, cleaves von Willebrand factor (VWF) in plasma to generate smaller, less thrombogenic fragments. The interaction of von Willebrand factor with specific ADAMTS13 domains was characterized with a binding assay employing von Willebrand factor immobilized on a plastic surface. ADAMTS13 binding was saturable and reversible. Equilibrium binding occurred within 2 h and the half-time for dissociation was approximately 4 h. Binding to von Willebrand factor was similar with either recombinant ADAMTS13 or normal plasma ADAMTS13; plasma from a patient who lacked ADAMTS13 activity showed no binding. The stoichiometry of binding was one ADAMTS13 per two von Willebrand factor monomers, and the K(d) was 14 nm. The ADAMTS13 metalloprotease and disintegrin domains did not bind VWF detectably. ADAMTS13 truncated after the first thrombospondin type 1 repeat bound VWF with a K(d) of 206 nm, whereas ADAMTS13 truncated after the spacer domain had a K(d) of 23 nm, which is comparable with that of full-length ADAMTS13. Truncation after the eighth thrombospondin type 1 repeat reduced the binding affinity by approximately 3-fold and truncation after the seventh thrombospondin type 1 repeat in addition to the CUB domains increased the affinity for von Willebrand factor by approximately 2-fold. Therefore, the spacer domain is required for ADAMTS13 binding to von Willebrand factor. The first thrombospondin repeat also affects binding, and the C-terminal thrombospondin type 1 and CUB domains of ADAMTS13 may modulate this interaction.  相似文献   

16.
Sulfatide-binding domain of the laminin A chain   总被引:2,自引:0,他引:2  
A sulfatide-binding site on the globular end region of the long arm of laminin has been identified. Following proteolytic digestion with thermolysin, an intact fragment of the laminin A chain carboxyl-terminal domain exhibiting sulfatide-binding activity was isolated using gel filtration and heparin affinity chromatography. This fragment is composed of two peptides that are covalently linked by at least one disulfide bond and encompass the carboxyl-terminal 394 amino acids of the A chain. The clusters of charged residues in the primary structure of these fragments are sufficient for heparin-binding activity but not sulfatide binding since reduction and alkylation of the fragments abolished sulfatide binding under conditions in which heparin binding was retained. Thus, sulfatide binding requires an intact three-dimensional structure. The iodinated fragment bound to A2058 melanoma and T47D breast carcinoma cells and could be displaced by the unlabeled fragment. Based on incorporation of [35S] sulfate, both cell lines synthesize sulfated glycolipids that bind to laminin. In agreement with previous data that indicate a synergistic interaction of the sulfatide-binding domain with other laminin-binding sites on melanoma cells during attachment, the isolated sulfatide-binding fragment significantly inhibited interaction of labeled intact laminin with melanoma and breast carcinoma cells in direct binding assays.  相似文献   

17.
Human platelet thrombospondin adsorbed on plastic promotes attachment and spreading of human G361 melanoma cells. Attachment is rapid, and spreading is maximal by 90 min with 60-90% of the attached cells spread. In contrast, thrombospondin promotes attachment but not spreading of human C32 melanoma cells, which attach and spread only on laminin substrates. The specificity of these interactions and the regions of the thrombospondin molecule involved in attachment and spreading were examined using proteolytic fragments of thrombospondin and by inhibition studies. The sulfated fucan, fucoidan, and monoclonal antibody A2.5, which is directed against the heparin-binding domain of thrombospondin, selectively inhibit spreading but only weakly inhibit attachment. Monoclonal antibodies against some other domains of thrombospondin, however, are potent inhibitors of attachment. The amino-terminal heparin-binding domain of thrombospondin does not promote attachment. Large fragments lacking the heparin-binding domain support attachment but not spreading of G361 cells. Attachment activity is lost following removal of the 18-kD carboxyl-terminal domain. These results suggest that at least two melanoma ligands are involved in cell attachment and spreading on thrombospondin. The carboxyl-terminal region and perhaps other regions of the molecule bind to receptor(s) on the melanoma surface that promote initial attachment but not cell spreading. Interaction of the heparin-binding domain with sulfated glycoconjugates on melanoma surface proteoglycans and/or sulfated glycolipids mediates spreading. Monoclonal antibodies A2.5 and C6.7 also reverse spreading of G361 cells growing on glass culture substrates, suggesting that binding to thrombospondin mediates attachment of these melanoma cells in culture.  相似文献   

18.
Laminin, a glycoprotein of basement membranes, agglutinates aldehyde-fixed erythrocytes. Laminin-mediated hemagglutination is strongly inhibited by some gangliosides and anionic phospholipids. Laminin, however, binds only to sulfatides among the lipids extracted from erythrocytes. We now report that gangliosides are remarkably potent inhibitors of laminin binding to sulfatides when both lipids are adsorbed on plastic. A 50% inhibition of laminin binding to 100 ng of sulfatides is obtained with 10 ng of GM3 and 8 ng of GM1, respectively. Mixing of sulfatides with neutral glycolipids, phosphatidyl choline, or cholesterol does not inhibit laminin binding, whereas mixing with sulfatide-depleted erythrocyte lipids enhances binding. Inhibition of binding by gangliosides is not due to competition for adsorption to the plastic, as preincubation of the adsorbed lipids with neuraminidase reverses inhibition by GM3, but not by GM1 which is not a substrate for the enzyme. These results are consistent with the observations that treatment of fixed erythrocytes with neuraminidase increases their agglutinability by laminin and that pretreatment of erythrocytes with gangliosides followed by washing gives similar inhibition as seen when gangliosides are present as competitive inhibitors. Thus, inhibition of laminin-mediated agglutination by gangliosides probably results from masking of erythrocyte sulfatides due to adsorption of gangliosides onto the membrane rather than from a direct competition for laminin binding sites.  相似文献   

19.
Binding specificity of the major surfactant protein SP-A from human and dog lung has been investigated. Radiobinding experiments have shown that both proteins bind in a Ca(2+)-dependent manner to galactose, mannose, fucose, and glucose linked to bovine serum albumin. These results are in accord with a previous study in which monosaccharides were linked to agarose (Haagsman, H. P., Hawgood, S., Sargeant, T., Buckley, D., White, R. T., Drickamer, K., and Benson, B. J. (1987) J. Biol. Chem. 262, 13877-13880). Chromatogram overlays in conjunction with in situ liquid secondary ion mass spectrometry (TLC-LSIMS) of several purified glycosphingolipids and neoglycolipids as well as binding assays with glycolipids immobilized on plastic wells, demonstrate recognition of galactose (human and dog SP-A), glucose, and lactose (human SP-A) in association with specific lipids. In addition, the occurrence of several neutral and acidic glycosphingolipids in human and rat extracellular surfactants and rat alveolar type II cells is described. Selected components among the neutral glycolipids are bound by radiolabeled human SP-A; these are identified by TLC-LSIMS as predominantly ceramide mono- and disaccharides (human surfactant) and ceramide tri- and tetrasaccharides (rat surfactant and type II cells). A recombinant carbohydrate recognition domain (CRD) of human SP-A inhibits the binding of human SP-A to galactosyl ceramide and to galactose- and mannose-bovine serum albumin, indicating that the CRD is directly involved in the binding of SP-A to these ligands. These results provide evidence for a novel type of binding specificity for proteins that have Ca(2+)-dependent CRDs and raise the possibility that glycosphingolipids are endogenous ligands for SP-A.  相似文献   

20.
Antistasin is a 119 amino acid heparin-binding protein from the leech Haementaria officinalis which has anticoagulant and antimetastatic properties. A series of peptides representing the basic amino acid-rich domains of the amino- and carboxyl-terminal regions of the inhibitor were synthesized by solid-phase peptide chemistry and their ability to bind sulfated glycolipids was investigated. The findings show that [A103,106,108] antistasin 93-119 has high affinity for sulfatide and inhibits the specific interaction of whole antistasin with [Gal(3-SO4)beta 1-1Cer]. We conclude that the 93-119 region is a critical domain that mediates the interaction of antistasin with sulfated glycolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号