首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative DNA damage processing in nuclear and mitochondrial DNA   总被引:5,自引:0,他引:5  
Bohr VA  Dianov GL 《Biochimie》1999,81(1-2):155-160
Living organisms are constantly exposed to oxidative stress from environmental agents and from endogenous metabolic processes. The resulting oxidative modifications occur in proteins, lipids and DNA. Since proteins and lipids are readily degraded and resynthesized, the most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability. Many different DNA base changes have been seen following some form of oxidative stress, and these lesions are widely considered as instigators for the development of cancer and are also implicated in the process of aging. Several studies have documented that oxidative DNA lesions accumulate with aging, and it appears that the major site of this accumulation is mitochondrial DNA rather than nuclear DNA. The DNA repair mechanisms involved in the removal of oxidative DNA lesions are much more complex than previously considered. They involve base excision repair (BER) pathways and nucleotide excision repair (NER) pathways, and there is currently a great deal of interest in clarification of the pathways and their interactions. We have used a number of different approaches to explore the mechanism of the repair processes, to examine the repair of different types of oxidative lesions and to measure different steps of the repair processes. Furthermore, we can measure the DNA damage processing in the nuclear DNA and separately, in the mitochondrial DNA. Contrary to widely held notions, mitochondria have efficient DNA repair of oxidative DNA damage.  相似文献   

2.
Bistranded oxidative clustered DNA lesions are closely spaced lesions (1-10 bp) that challenge the DNA repair mechanisms and are associated with genomic instability. The endogenous levels of oxidative clustered DNA lesions in cells of human cancer cell lines or in animal tissues remain unknown, and these lesions may persist for a long time after irradiation. We measured the different types of DNA clusters in cells of two human cell lines, MCF-7 and MCF-10A, and in skin obtained from mice exposed to either 12.5 Gy or sham X radiation. For the detection and measurement of oxidative clustered DNA lesions, we used adaptations of number average length analysis, constant-field agarose gel electrophoresis, putrescine, and the repair enzymes APE1, OGG1 (human) and Nth1 (E. coli). Increased levels of all cluster types were detected in skin tissue from animals exposed to radiation at 20 weeks postirradiation. The level of endogenous (no radiation treatment) oxidative clustered DNA lesions was higher in MCF-7 cells compared to nonmalignant MCF-10A cells. To the best of our knowledge, this is the first study to demonstrate persistence of oxidative clustered DNA lesions for up to 20 weeks in animal tissues exposed to radiation and to detect these clusters in human breast cancer cells. This may underscore the biological significance of clustered DNA lesions.  相似文献   

3.
DNA damage drives genetic mutations that underlie the development of cancer in humans. Multiple pathways have been described in mammalian cells which can repair this damage. However, most work to date has focused upon single lesions in DNA. We present here a combinatorial system which allows assembly of duplexes containing single or multiple types of damage by ligating together six oligonucleotides containing damaged or modified bases. The combinatorial system has dual fluorescent labels allowing examination of both strands simultaneously, in order to study interactions or competition between different DNA repair pathways. Using this system, we demonstrate how repair of oxidative damage in one DNA strand can convert a mispaired T:G deamination intermediate into a T:A mutation. We also demonstrate that slow repair of a T:G mispair, relative to a U:G mispair, by the human methyl-binding domain 4 DNA glycosylase provides a competitive advantage to competing repair pathways, and could explain why CpG dinucleotides are hotspots for C to T mutations in human tumors. Data is also presented that suggests repair of closely spaced lesions in opposing strands can be repaired by a combination of short and long-patch base excision repair and simultaneous repair of multiply damage sites can potentially lead to lethal double strand breaks.  相似文献   

4.
The well established toxicity of cadmium and cadmium compounds results from their additive effects on several key cellular processes, including DNA repair. Mammalian cells have evolved several biochemical pathways to repair DNA lesions and maintain genomic integrity. By interfering with the homeostasis of redox metals and antioxidant systems, cadmium promotes the development of an intracellular environment that results in oxidative DNA damage which can be mutagenic if unrepaired. Small base lesions are recognised by specialized glycosylases and excised from the DNA molecule. The resulting abasic sites are incised, and the correct sequences restored by DNA polymerases using the opposite strands as template. Bulky lesions are recognised by a different set of proteins and excised from DNA as part of an oligonucleotide. As in base repair, the resulting gaps are filled by DNA polymerases using the opposite strands as template. Thus, these two repair pathways consist in excision of the lesion followed by DNA synthesis. In this study, we analysed in vitro the direct effects of cadmium exposure on the functionality of base and nucleotide DNA repair pathways. To this end, we used recently described dedicated microarrays that allow the parallel monitoring in cell extracts of the repair activities directed against several model base and/or nucleotide lesions. Both base and nucleotide excision/repair pathways are inhibited by CdCl?, with different sensitivities. The inhibitory effects of cadmium affect mainly the recognition and excision stages of these processes. Furthermore, our data indicate that the repair activities directed against different damaged bases also exhibit distinct sensitivities, and the direct comparison of cadmium effects on the excision of uracile in different sequences even allows us to propose a hierarchy of cadmium sensibility within the glycosylases removing U from DNA. These results indicate that, in our experimental conditions, cadmium is a very potent DNA repair poison.  相似文献   

5.
Oxidative damage to mitochondrial DNA (mtDNA) has been implicated as a causative factor in many disease processes and in aging. We have recently discovered that different cell types vary in their capacity to repair this damage, and this variability correlates with their ability to withstand oxidative stress. To explore strategies to enhance repair of oxidative lesions in mtDNA, we have constructed a vector containing a mitochondrial transport sequence upstream of the sequence for human 8-oxoguanine DNA glycosylase. This enzyme is the glycosylase/AP lyase that participates in repair of purine lesions, such as 8-oxoguanine. Western blot analysis confirmed that this recombinant protein was targeted to mitochondria. Enzyme activity assays showed that mitochondrial extracts from cells transfected with the construct had increased enzyme activity compared with cells transfected with vector only, whereas nuclear enzyme activity was not changed. Repair assays showed that there was enhanced repair of oxidative lesions in mtDNA. Additional studies revealed that this augmented repair led to enhanced cellular viability as determined by reduction of the tetrazolium compound to formazan, trypan blue dye exclusion, and clonogenic assays. Therefore, targeting of DNA repair enzymes to mitochondria may be a viable approach for the protection of cells against some of the deleterious effects of oxidative stress.  相似文献   

6.
Cells in tissues and organs are continuously subjected to oxidative stress and free radicals on a daily basis. This free radical attack has exogenous or endogenous (intracellular) origin. The cells withstand and counteract this occurrence by the use of several and different defense mechanisms ranging from free radical scavengers like glutathione (GSH), vitamins C and E and antioxidant enzymes like catalase, superoxide dismutase and various peroxidases to sophisticated and elaborate DNA repair mechanisms. The outcome of this dynamic equilibrium is usually the induction of oxidatively induced DNA damage and a variety of lesions of small to high importance and dangerous for the cell i.e. isolated base lesions or single strand breaks (SSBs) to complex lesions like double strand breaks (DSBs) and other non-DSB oxidatively generated clustered DNA lesions (OCDLs). The accumulation of DNA damage through misrepair or incomplete repair may lead to mutagenesis and consequently transformation particularly if combined with a deficient apoptotic pathway. In this review, we present the current status of knowledge and evidence on the mechanisms and involvement of intracellular oxidative stress and DNA damage in human malignancy evolution and possible use of these parameters as cancer biomarkers. At the same time, we discuss controversies related to potential artifacts inherent to specific methodologies used for the measurement of oxidatively induced DNA lesions in human cells or tissues.  相似文献   

7.
8.
Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.  相似文献   

9.
The repair of oxidative base lesions in DNA is a coordinated chain of reactions that includes removal of the damaged base, incision of the phosphodiester backbone at the abasic sugar residue, incorporation of an undamaged nucleotide and sealing of the DNA strand break. Although removal of a damaged base in mammalian cells is initiated primarily by a damage-specific DNA glycosylase, several lyases and DNA polymerases may contribute to the later stages of repair. DNA polymerase beta (Pol beta) was implicated recently as the major polymerase involved in repair of oxidative base lesions; however, the identity of the lyase participating in the repair of oxidative lesions is unclear. We studied the mechanism by which mammalian cell extracts process DNA substrates containing a single 8-oxoguanine or 5,6-dihydrouracil at a defined position. We find that, when repair synthesis proceeds through a Pol beta-dependent single nucleotide replacement mechanism, the 5'-deoxyribosephosphate lyase activity of Pol beta is essential for repair of both lesions.  相似文献   

10.
跨损伤合成的DNA聚合酶——一类新的DNA聚合酶   总被引:1,自引:0,他引:1  
细胞虽然拥有多种修复途径,但有些DNA损伤仍不可避免地会逃避修复而在基因组上保留下来,细胞跨损伤DNA合成的分子机制一直是DNA修复中主要的未解决问题之一.最近通过对一类结构相关性UmuC/DinB蛋白质超家族成员的研究发现它们具有DNA聚合酶功能.这类新发现的DNA聚合酶不同于经典的复制性DNA聚合酶,它们能以易误/突变(error-prone/mutagenic)或无误(error-free)方式进行跨损伤(translesion)DNA合成,并且从细菌到人在进化上功能保守.  相似文献   

11.
Base excision repair is the major pathway for the repair of oxidative DNA damage in human cells that is initiated by a damage-specific DNA glycosylase. In human cells, the major DNA glycosylases for the excision of oxidative base damage are OGG1 and NTH1 that excise 8-oxoguanine and oxidative pyrimidines, respectively. We find that both enzymes have limited activity on DNA lesions located in the vicinity of the 3′ end of a DNA single-strand break, suggesting that other enzymes are involved in the processing of such lesions. In this study, we identify and characterize NEIL1 as a major DNA glycosylase that excises oxidative base damage located in close proximity to the 3′ end of a DNA single-strand break.  相似文献   

12.
Summary Two different pathways A and 1 are known to control the repair of UV lesions in the yeast Schizosaccharomyces pombe. The relation between the UV-induced intergenic mitotic crossing over (MCO) and the repair of prelethal lesions controlled by these pathways were studied in the following strains: UVS1,1/UVS1,1, where pathway A acts; UVSA/UVSA where pathway 1 acts, UVS+/UVS+ (wild type) and UVS1A/UVS1A (double mutant). The analysis of the survival and MCO induction curves, and the comparison, as a function of the dose and as a function of survival, of the MCO induction curves corresponding to the different strains, show that the repair pathway 1 controls a mechanism involving recombination, and that the repair pathway A controls a mechanism which removes prerecombinational lesions. Studies were done with UVS1,1/UVS1,1 cells in different physiological conditions affecting the repair efficiency of prelethal lesions (irradiation during the logarithmic growth phase, liquid holding). In all cases the more efficient the repair of prelethal lesions is, the smaller is the recombination inducibility. This is expected if pathway A controls an excision repair mechanism.The effect of the repair inhibitor, caffeine, was studied. It inhibits only the repair of UV prelethal lesions controlled by pathway 1. The involvement of recombination in the repair of UV lesions in UVS+/UVS+ and UVSA/UVSA cells is also shown by the fact that the sensitization to the lethal effect of UV by caffeine in these strains is correlated with a decrease in UV MCO inducibility. Caffeine has no effect either on the UV survival, or on the MCO inducibility in UVS1,1/UVS1,1 cells. It is concluded that it inhibits the recombinational repair pathway and not the excision repair pathway.The MCO induction observed in UVS1/UVS1 and UVS1A/UVS1A cells could be due to the presence of a second recombinational pathway, not sensitive to caffeine. At least a fraction of the prerecombinational lesions would not be prelethal, and they are repairable by the excision repair mechanism.  相似文献   

13.
MutY DNA glycosylase homologs (MYH or MUTYH) reduce G:C to T:A mutations by removing misincorporated adenines or 2-hydroxyadenines paired with guanine or 8-oxo-7,8-dihydroguanine (8-oxo-G). Mutations in the human MYH (hMYH) gene are associated with the colorectal cancer predisposition syndrome MYH-associated polyposis. To examine the function of MYH in human cells, we regulated MYH gene expression by knockdown or overproduction. MYH knockdown human HeLa cells are more sensitive to the killing effects of H2O2 than the control cells. In addition, hMYH knockdown cells have altered cell morphology, display enhanced susceptibility to apoptosis, and have altered DNA signaling activation in response to oxidative stress. The cell cycle progression of hMYH knockdown cells is also different from that of the control cells following oxidative stress. Moreover, hMYH knockdown cells contain higher levels of 8-oxo-G lesions than the control cells following H2O2 treatment. Although MYH does not directly remove 8-oxo-G, MYH may generate favorable substrates for other repair enzymes. Overexpression of mouse Myh (mMyh) in human mismatch repair defective HCT15 cells makes the cells more resistant to killing and refractory to apoptosis by oxidative stress than the cells transfected with vector. In conclusion, MYH is a vital DNA repair enzyme that protects cells from oxidative DNA damage and is critical for a proper cellular response to DNA damage.  相似文献   

14.
Epidemiological studies have demonstrated an inverse relationship between selenium (Se) intake and cancer incidence and/or mortality. However, the molecular mechanisms underlying the cancer chemopreventive activity of Se compounds remain largely unknown. The objective of this study was to investigate the effect of low doses of Se on the stimulation of DNA repair systems in response to four different qualities of DNA damage. P53-proficient LNCaP human prostate adenocarcinoma cells were grown either untreated or in the presence of low concentrations of two Se compounds (30° nM sodium selenite, or 10 μM selenomethionine) and exposed to UVA, H2O2, methylmethane sulfonate (MMS) or UVC. Cell viability as well as DNA damage induction and repair were evaluated by the alkaline Comet assay. Overall, Se was shown to be a very potent protector against cell toxicity and genotoxicity induced by oxidative stress (UVA or H2O2) but not from the agents that induce other types of deleterious lesions (MMS or UVC). Furthermore, Se-treated cells exhibited increased oxidative DNA repair activity, indicating a novel mechanism of Se action. Therefore, the benefits of Se could be explained by a combination of antioxidant activity, the reduction in DNA damage and the enhancement of oxidative DNA repair capacity.  相似文献   

15.

Background

Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells.

Methodology/Principal Findings

Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5′ next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts.

Conclusions/Significance

This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.  相似文献   

16.
The high steady-state level of mitochondrial DNA (mtDNA) oxidative lesions is assumed to be the result of high susceptibility to DNA damage attack and limited DNA repair capacity in mitochondria. As a key enzyme of base excision repair (BER), human apurinic/apyrimidinic endonuclease (APE1) is often scarce in mitochondria, and mitochondria-targeted APE1 with robust repair activity represents a promising therapeutic candidate. In this study, overexpression vectors of mitochondria-targeted truncated APE1 (mtAPE1) and that of full-length APE1 (flAPE1) were constructed and transfected to human umbilical vein endothelial cells to test their protective effects after hydrogen peroxide-induced oxidative stress. The overexpression of truncated APE1 was achieved at protein and enzyme activity levels in mitochondria of mtAPE1-transfected cells. In parallel, enhanced mtDNA repair capacity and increased cell survival were observed. MtAPE1 transfection also prevented apoptosis by blocking mitochondria-dependent pathways. In contrast, flAPE1 transfection rendered slight elevation of nuclear APE1 protein level and nuclear APE activity but no benefits for cell resistance to oxidative stress. The present results suggest that overexpression of the truncated APE1 in mitochondria appears to be a viable approach to protecting healthy cells from some deleterious effects of oxidative stress.  相似文献   

17.
Bistranded complex DNA damage, i.e., double-strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions, is hypothesized to challenge the repair mechanisms of the cell and consequently the genomic integrity. The oxidative clustered DNA lesions may be persistent and may accumulate in human cancer cells for long times after irradiation. To evaluate the detection and possible accumulation of oxidative clustered DNA lesions in leukemia cells exposed to doses equivalent to those used in radiotherapy, we measured the induction of DSBs and three different types of oxidative clustered DNA lesions in NALM-6 cells, a human acute lymphoblastic leukemia (ALL) pre-B cell line, after exposure to (137)Cs gamma rays. For the detection and measurement of DSBs and oxidative clustered DNA lesions, we used an adaptation of the neutral comet assay (single-cell gel electrophoresis) using E. coli repair enzymes (Endo IV, Fpg and Endo III) as enzymatic probes. We found a linear dose response for the induction of DSBs and oxidative clustered DNA lesions. Clustered DNA lesions were more prevalent than prompt DSBs. For each DSB induced by radiation, approximately 2.5 oxidative clustered DNA lesions were detected. To our knowledge, this is the first study to demonstrate the detection and linear induction of oxidative clustered DNA lesions with radiation dose in an ALL cell line. These results point to the biological significance of clustered DNA lesions.  相似文献   

18.
19.
Stary A  Sarasin A 《Biochimie》2002,84(1):49-60
All living organisms are constantly exposed to endogenous or exogenous agents that can cause damage to the genomic DNA, leading to the loss of stable genetic information. Fortunately, all cells are equipped with numerous classes of DNA repair pathways which are able to correct many kinds of DNA damage such as bulky adducts, oxidative lesions, single- and double-strand breaks and mismah.The importance of these DNA repair processes is attested by the existence of several rare but dramatic hereditary diseases caused by defects in one of their repair pathways. These diseases are usually associated with early onset of malignancies confirming the direct relationship between unrepaired DNA lesions, mutations or chromosomal modifications and cancer incidence. Among these hereditary diseases the UV-hypersensitive ones have been particularly well studied and the xeroderma pigmentosum (XP) is probably the best known syndrome up to now in terms of genetics and biochemistry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号