首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic analyses were performed with four sex-linked plumage color mutations (roux, brown, imperfect albino, and cinnamon) in Japanese quail (Coturnix japonica). Roux and brown quail have similar plumage color, but plumage of roux quail is paler. Pure, F1 and F2 matings were carried out with roux and brown stocks, and 357, 338, and 273 progeny with either roux or brown plumage color were obtained from each mating type, respectively. These allelism tests showed that mutations for roux and brown colors were alleles (*R and *B) from the same locus BR, and that BR*B was dominant over BR*R. Two alleles at the AL locus, AL*A (imperfect albino) and AL*C (cinnamon) were used to estimate the recombination frequency between the BR and AL loci on the Z chromosome. It was estimated to be 38.1+/-1.0% based on 4615 chicks from the test crosses.  相似文献   

2.
Homology for two plumage color loci was studied by hybridization between chickens and Japanese quail. First, chicken-quail hybrids were produced from homozygous "lavender" chicken cocks and "bleu" Japanese quail, and all 30 hybrids had the same parental slate blue plumage color. On the other hand, no hybrids with this plumage were obtained out of 18 progeny from the same cocks and wild-type quail. These results show that the slate blue plumage color is determined by homologous loci in Japanese quail and chickens. Second, all (n = 25) chicken-quail hybrids hatched from homozygous "recessive white" cocks and "recessive white" (n = 8) or "wild-type" (n = 17) quail had the same pattern of plumage color, with white feathers on the ventral face and colored feathers elsewhere. These results indicate that the recessive white mutations are not homologous in Japanese quail and chickens.  相似文献   

3.
The absorbance of melanin content from dorsal feathers was compared between wild-type Japanese quail and nine other quail plumage colours determined by single mutations in one of seven genes: extended brown ( MC1R ), yellow ( ASIP ), silver ( MITF ), lavender ( MLPH ), roux ( TYRP1 ), imperfect albinism ( SLC45A2 ) and rusty . As compared with wild-type quail, all mutations but extended brown decreased total melanins. The largest decrease was observed in quail with one of the dilution mutations at TYRP1 , MLPH or SLCA45A2 . No difference in eumelanins was found between the 10 plumage colours. Despite visible colour differences, homozygous and heterozygous mutants at MITF , or the two imperfect albino (white) and cinnamon (pale yellow) alleles at SLC45A2, could not be differentiated on the basis of melanins. In contrast, the two white phenotypes caused by mutations at MITF and SLC45A2, or the two reddish plumage colours caused by the roux and rusty non-allelic mutations had different total melanin contents. The results showed that rusty was not likely to be a dilution mutation.  相似文献   

4.
The recessive black plumage mutation in the Japanese quail (Coturnix japonica) is controlled by an autosomal recessive gene (rb) and displays a blackish-brown phenotype in the recessive homozygous state (rb/rb). A similar black coat color phenotype in nonagouti mice is caused by an autosomal recessive mutation at the agouti locus. An allelism test showed that wild type and mutations for yellow, fawn-2, and recessive black in Japanese quail were multiple alleles (*N, *Y, *F2, and *RB) at the same locus Y and that the dominance relationship was Y*F2 > Y*Y > Y*N > Y*RB. A deletion of 8 bases was found in the ASIP gene in the Y*RB allele, causing a frameshift that changed the last six amino acids, including a cysteine residue, and removed the normal stop codon. Since the cysteine residues at the C terminus are important for disulphide bond formation and tertiary structure of the agouti signaling protein, the deletion is expected to cause a dysfunction of ASIP as an antagonist of alpha-MSH in the Y*RB allele. This is the first evidence that the ASIP gene, known to be involved in coat color variation in mammals, is functional and has a similar effect on plumage color in birds.  相似文献   

5.
We investigated TYRP1 as a candidate locus for the recessive, sex-linked roux (br(r)) phenotype in Japanese quail. A screen of the entire coding sequence of TYRP1 in roux and wild-type quail revealed a non-synonymous T-to-C substitution in exon 3, leading to a Phe282Ser mutation. This was perfectly associated with plumage phenotype: all roux birds were homozygous for Ser282. Co-segregation of the Phe282Ser mutation with the roux phenotype was confirmed in three br(r)/BR+ x br(r)/- backcrosses. We found no significant difference in TYRP1 expression between roux and wild-type birds, suggesting that this association is not due to linkage disequilibrium with an unknown regulatory mutation. In addition, the Phe282 amino acid appears to be of functional significance, as it is highly conserved across the vertebrates. This is the first demonstration that TYRP1 has a role in pigmentation in birds.  相似文献   

6.
Yue  Qingqi  Apprey  Victor  Bonney  George E 《BMC genetics》2005,6(1):1-5

Background

The genetics of plumage of Japanese quail is of interest both from a biological standpoint, for comparative studies between avian species, and from a zootechnical standpoint, for identifying commercial selection lines or crosses. There are only few plumage mutations reported in quail, and the present work describes a new color variant "rusty" and a new feather structure "curly", and their heredity from an F1 and F2 segregation experiment.

Results

Curly feathers result from abnormal early growth caused by transient joining of follicle walls of adjacent feathers around 10 days of age, but the expression of the trait is variable. Rusty plumage color results from the replacement of the wild-type plumage pattern on the tip of the feather by a reddish coloration, but the pigmentation of the bottom part of the feather is not affected. Two lines breeding true for the curly or the rusty phenotype were developed. Both characters are determined by autosomal recessive mutations which are independent. The curly mutation has also a positive effect on body weight at 5 weeks of age.

Conclusion

The curly line is a new model which may be used for further work on the growth of the feather, and the rusty mutation is a new addition to the panel of plumage mutations available for comparative studies in poultry, and more generally among avian species.  相似文献   

7.
8.
ABSTRACT: BACKGROUND: The lavender phenotype in quail is a dilution of both eumelanin and phaeomelanin in feathers that produces a blue-grey colour on a wild-type feather pattern background. It has been previously demonstrated by intergeneric hybridization that the lavender mutation in quail is homologous to the same phenotype in chicken, which is caused by a single base-pair change in exon 1 of MLPH. RESULTS: In this study, we have shown that a mutation of MLPH is also associated with feather colour dilution in quail, but that the mutational event is extremely different. In this species, the lavender phenotype is associated with a non-lethal complex mutation involving three consecutive overlapping chromosomal changes (two inversions and one deletion) that have consequences on the genomic organization of four genes (MLPH and the neighbouring PRLH, RAB17 and LRRFIP1). The deletion of PRLH has no effect on the level of circulating prolactin. Lavender birds have lighter body weight, lower body temperature and increased feed consumption and residual feed intake than wild-type plumage quail, indicating that this complex mutation is affecting the metabolism and the regulation of homeothermy. CONCLUSIONS: An extensive overlapping chromosome rearrangement was associated with a non-pathological Mendelian trait and minor, non deleterious effects in the lavender Japanese quail which is a natural knockout for PRLH.  相似文献   

9.
The objective of this work was to map classical markers (plumage colours and blood proteins) on the microsatellite linkage map of the Japanese quail (Coturnix japonica). The segregation data on two plumage colours and three blood proteins were obtained from 25 three-generation families (193 F2 birds). Linkage analysis was carried out for these five classical markers and 80 microsatellite markers. A total of 15 linkage groups that included the five classical loci and 69 of the 80 microsatellite markers were constructed. Using the BLAST homology search against the chicken genome sequence, three quail linkage groups, QL8, QL10 and QL13, were suggested to be homologous to chicken chromosomes GGA9, GGA20 and GGA24, respectively. Two plumage colour loci, black at hatch (Bh) and yellow (Y), and the three blood protein loci, transferrin (Tf), haemoglobin (Hb-1) and prealbumin-1 (Pa-1), were assigned to CJA01, QL10, QL8, CJA14 and QL13, respectively.  相似文献   

10.
The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus)   总被引:2,自引:0,他引:2  
Genetic studies demonstrated three loci controlling coat colors in the Mongolian gerbil. F1 hybrids of white gerbils with red eyes and agouti gerbils with wild coat color had the agouti coat color. The segregating ratio of agouti and white in the F2 generation was 3:1. In the backcross (BC) generation (white x F1), the ratio of the agouti and white coat colors was 1:1. Next, inheritance of the agouti coat color was investigated. Matings between agouti and non-agouti (black) gerbils produced only agouti gerbils. In the F2 generation, the ratio of agouti to non-agouti (black) was 3:1. There was no distortion in the sex ratios within each coat color in the F1, F2 and BC generations. This indicated that the white coat color of gerbils is governed by an autosomal recessive gene which should be named the c allele of the c (albino) locus controlling pigmentation, and the agouti coat color is controlled by an autosomal dominant gene which might be named the A allele of the A (agouti) locus controlling pigmentation patterns in the hair. The occurrence of the black gerbil demonstrated clearly the existence of the b (brown) locus, and it clearly indicated that the coat colors of gerbils can basically be explained by a, b, and c loci as in mice and rats.  相似文献   

11.
We transfused concentrated primordial germ cells (PGCs) of the black strain (D: homozygous for the autosomal incomplete dominant gene, D) of quail into the embryos of the wild-type plumage strain (WP: d+/d+) of quail. The recipient quail were raised until sexual maturity and a progeny test of the putative germline chimeras was performed to examine the donor gamete-derived offspring (D/d+). Thirty-one percent (36/115) of the transfused quail hatched and 21 (13 females and 8 males) of them reached maturity. Five females and 2 males were germline chimeras producing donor gamete-derived offspring. Transmission rates of the donor derived gametes in the chimeric females and males were 1.8-8.3% and 2.6-63.0%, respectively. Germline chimeric and the other putative chimeric males were also test-mated with females from the sex-linked imperfect albino strain (AL: d+/d+, al/W, where al indicates the sex-linked imperfect albino gene on the Z chromosome, and W indicates the W chromosome) for autosexing of W-bearing spermatozoa: No albino offspring were born.  相似文献   

12.
The Control of Color in Birds   总被引:2,自引:0,他引:2  
SYNOPSIS. The colors of birds result from deposition of pigments—mainlymelanins and carotenoids—in integumentary structures,chiefly the feathers. The plumages of birds indicate their age,sex, and mode of living, and play important roles in camouflage,mating, and establishment of territories. Since feathers aredead structures, change of color of feathers is effected throughdivestment (molt) and replacement. The color and pattern ofa feather are determined by the interplay of genetic and hormonalinfluences prevailing in its base during regeneration. Mostbirds replace their feathers at least once annually. Some wearthe same kind of basic plumage all the time butothers alternatea basic and breeding plumage, either in one (the male) or bothsexes. Still others may have more than two molts, adding supplementalplumage at certain times in the plumage cycle. The varietiesof patterns of molt, the kinds of plumage, and the colors andpatterns of feathers among birds apparently are the result ofseveral kinds of selection pressures working through evolution.  相似文献   

13.
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10‐bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large‐scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild‐type allele at the co‐dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named ‘cool gray’. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.  相似文献   

14.
Several studies have suggested that peak plumage reflectance in birds matches color preferences used in mate choice. We tested this hypothesis in adult satin bowerbird males that have a short‐wavelength saturated blue‐black plumage with a peak reflectance in the UV. We found that the chroma of the blue (405–480 nm), but not the peak reflecting UV (320–400 nm) portion of the male plumage spectrum was significantly correlated with male mating success. A plot of correlation coefficients between male mating success and plumage saturation showed a well‐defined peak in the blue. This suggests that: 1) blue plumage coloration is more important in mate choice than UV or other colors, and 2) that there is a mismatch between the peak reflectance of the plumage of male satin bowerbirds and the range of plumage wavelengths that are correlated with male mating success. This indicates that it is not safe to infer a role of UV or other colors in mate choice simply because of a peak in plumage reflectance.  相似文献   

15.
In this paper, we executed genome mapping and comparative mapping analyses for cvd and hob, autosomal recessive mutations with cerebellar vermis defect and cerebellar dysplasia in the rat. For the linkage analysis, we produced three sets of backcross progeny, (ACI x CVD)F(1) and (F344 x CVD)F(1) females crossed to a cvd homozygous male rat, and (HOB x WKY)F(1) males crossed to hob homozygous female rats. Analysis of the segregation patterns of simple sequence length polymorphism (SSLP) markers scanning the whole rat genome allowed the mapping of these autosomal recessive mutations to rat Chromosome (Chr) 2. The most likely gene order is D2Mgh12 - D2Rat86 - D2Mit15 - D2Rat185 - cvd - D2Rat66 - D2Mgh13, and D2Mit18 - Fga -D2Mit14 - D2Rat16 - hob - D2Mgh13. Crossing test between a proven cvd heterozygous and a hob heterozygous rats demonstrated their allelism. Furthermore, comparative mapping indicated the cvd locus corresponds to mouse chromosome 3 and a strong candidate gene Unc5h3, a causative gene for the rostral cerebellar malformation mouse, was implicated.  相似文献   

16.
Inheritance of the henny-feathering trait of the Sebright bantam chicken   总被引:1,自引:0,他引:1  
The henny -feathering trait of the Sebright bantam chicken is the result of an enhanced rate of estrogen synthesis (aromatase activity) in skin and other peripheral tissues of this bird. To gain insight into the underlying nature of this mutation, we examined the inheritance of this trait using a sensitive isotopic assay for aromatase activity. All birds of the F1 generation obtained by crossing homozygous henny X non- henny chickens expressed increased aromatase in the skin, and the males exhibited henny -feathering plumage. The average rate of aromatase activity in the skin of F1 chicks was approximately half that of homozygous henny chicks. The distribution of increased aromatase activity in the F2 generation and in the backcrosses of F1 to the two types of parental strains suggest that the enzyme activity in extragonadal tissues is regulated predominantly by one autosomal gene. Attempts to demonstrate linkage to several known loci by backcrossing F1 heterozygotes with parental chickens carrying a variety of genetic markers were unsuccessful. We conclude that the enhanced estrogen synthesis in extragonadal tissues in chickens carrying this gene is inherited as an autosomal codominant but that a half maximal level of the enzyme is sufficient to allow full development of female feathering in affected male birds so that henny -feathering is transmitted as a dominant trait.  相似文献   

17.
鹌鹑羽色遗传的研究及应用   总被引:6,自引:0,他引:6  
庞有志  赵淑娟 《遗传》2003,25(4):450-454
鹌鹑的羽色主要有野生型、白色型、深色型、褐色型、黑白镶嵌型、褐白镶嵌型、黄色型、红色型和紫色型等,目前已发现大约有26个基因座与鹌鹑的羽色有关。这些基因座多数位于常染色体上,有5 个基因座位于Z染色体上,有4 个基因座存在有复等位基因系列。多数基因座的等位基因呈显隐性关系,少数表现为等显性或不完全显性。有5个基因座的显性羽色突变基因如黄羽、银色羽、白羽、孵化黑羽和亮绒羽在纯合状态下具有致死或半致死效应。羽色标记在鹌鹑育种和生产以及科学研究中已发挥了重要作用,作者就今后加强鹌鹑羽色标记研究提出了一些建议。 Abstract:The main plumage traits including wild-type,white,dark black,brown,dark-white inlays,brown-white inlays,yellow,red and purple have been reported,which are related to 26 loci.The majority of the loci are at the autosome and five loci at the Z chromosome.Four loci have multiple allelic series.The dominance or recessive relation are shown between allele of the most loci and few of them show allelic equivalence or incompletely dominance.There are five dominant plumage color mutations,such as yellow,silver,white,black at hatch and light down are lethal or semi-lethal in the homozygous state.These plumage color marker have played an important part in the breeding and production of quails and research fields.Some proposals are put forward in terms of strengthening the study of plumage color marks of quails.  相似文献   

18.
We investigated melanocortin 1 receptor (MC1R) as a candidate locus for the Extended brown phenotype in quail, in which there is a general darkening throughout the plumage. An initial screen of variation in MC1R in Extended brown and in wild-type quails revealed two polymorphic non-synonymous sites. One of these sites, a G-to-A substitution leading to a Glu92Lys mutation, was perfectly associated with plumage phenotype; all Extended brown birds were homozygous for Lys92. Co-segregation of the Glu92Lys mutation with the Extended brown phenotype was confirmed in 24 progeny of an E/e(+) x E/e(+) cross. Glu92Lys is likely to be the causative mutation for the increased melanism in Extended brown, given that the same mutation is associated with melanic plumage in many breeds of domestic chicken, as well as in a wild passerine bird (the bananaquit, Coereba flaveola) and laboratory mice. Interestingly, the increase in melanization with the Glu92Lys mutation is less marked in quails than in most other birds and mammals. Phylogenetic results indicate that the Glu92Lys mutation has independently occurred in quail and chicken lineages.  相似文献   

19.
Kim S  Bang H  Yoo KS  Pike L 《Molecules and cells》2007,23(2):192-197
Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.  相似文献   

20.
Birds display a tremendous variety of carotenoid-based colors in their plumage, but the mechanisms underlying interspecific variability in carotenoid pigmentation remain poorly understood. Because vertebrates cannot synthesize carotenoids de novo, access to pigments in the diet is one proximate factor that may shape species differences in carotenoid-based plumage coloration. However, some birds metabolize ingested carotenoids and deposit pigments that differ in color from their dietary precursors, indicating that metabolic capabilities may also contribute to the diversity of plumage colors we see in nature. In this study, we investigated how the acquisition and utilization of carotenoids influence the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). We supplemented the diet of captive goldfinches with red carotenoids to determine whether males, which are typically yellow in color, were capable of growing red plumage. We also deprived cardinals of red dietary pigments to determine whether they could manufacture red carotenoids from yellow precursors to grow species-typical red plumage. We found that American goldfinches were able to deposit novel pigments in their plumage and develop a striking orange appearance. Thus, dietary access to pigments plays a role in determining the degree to which goldfinches express carotenoid-based plumage coloration. We also found that northern cardinals grew pale red feathers in the absence of red dietary pigments, indicating that their ability to metabolize yellow carotenoids in the diet contributes to the bright red plumage that they display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号