首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testican-1 is a highly conserved, multidomain, chondroitin sulfate proteoglycan that is most abundantly transcribed in the brain by neurons. This testican messenger RNA is not detected in normal quiescent astrocytes, but is up regulated when these cells are activated in response to injury such as cerebral stroke. Other chondroitin sulfate proteoglycans found in glial scars, including neurocan, have been shown to inhibit neural cell attachment and neurite extensions and may thus impede axonal regeneration. Here we report the expression and purification of a proteoglycan form of recombinant testican and its effects on neuron-derived cells in culture. We demonstrate that testican inhibits attachment of Neuro-2a cells and their ability to form neurite extensions. Both testican proteoglycan and the core glycoprotein that has been depleted of chondroitin sulfate inhibit cell attachment. Pre-treatment of the culture substratum with testican inhibits Neuro-2a attachment, but pre-treatment of the cells with testican does not inhibit their attachment. Testican, therefore, blocks attachment sites on cultureware and may also block attachment sites in the extracellular matrix of the brain.  相似文献   

2.
Testican is a highly conserved, differentially expressed gene product of unknown function. Since testican is expressed by human endothelial cells and includes a signal sequence, it was our hypothesis that testican protein would be present in blood. We have developed chicken antibodies specific for testican sequence near the N-terminal and identified a 130-kDa form of testican in human plasma. This is much larger than the calculated molecular weight of the encoded polypeptide, suggesting glycosylation of this plasma protein, and large forms of recombinant testican produced in culture were found to include chondroitin sulfate. The 130-kDa form of testican is unstable in plasma. It is converted to smaller stable forms by separable plasma factors that can be blocked by certain serine protease inhibitors. Testican size conversion may be important in its functional activation or decay. One testican domain has strong homology to thyropin-type cysteine protease-inhibitors. Thus, testican may have a function related to protease inhibition in the blood.  相似文献   

3.
The testicans are a three‐member family of secreted proteoglycans structurally related to the BM‐40/secreted protein acidic and rich in cystein (SPARC) osteonectin family of extracellular calcium‐binding proteins. In vitro studies have indicated that testicans are involved in the regulation of extracellular protease cascades and in neuronal function. Here, we describe the biochemical characterization and tissue distribution of mouse testican‐3 as well as the inactivation of the corresponding gene. The expression of testican‐3 in adult mice is restricted to the brain, where it is located diffusely within the extracellular matrix, as well as associated with cells. Brain‐derived testican‐3 is a heparan sulphate proteoglycan. In cell culture, the core protein is detected in the supernatant and the extracellular matrix, whereas the proteoglycan form is restricted to the supernatant. This indicates possible interactions of the testican‐3 core protein with components of the extracellular matrix which are blocked by addition of the glycosaminoglycan chains. Mice deficient in testican‐3 are viable and fertile and do not show an obvious phenotype. This points to a functional redundancy among the different members of the testican family or between testican‐3 and other brain heparan sulphate proteoglycans.  相似文献   

4.
Tricellulin is a tight junction (TJ) protein, which is not only concentrated at tricellular contacts but also present at bicellular contacts between epithelial tissues. We scrutinized the brain for tricellulin expression in endothelial and neural cells by using real-time polymerase chain reaction, Western blot and immunohistochemical and immunocytochemical analysis of cultured brain cells and paraffin sections of brain. Tricellulin mRNA was detected in primary cultures and in a cell line of human brain microvascular endothelial cells. Protein expression was confirmed by Western blot and immunofluorescence analysis, which further highlighted the localization of tricellulin in the cell membrane at tricellular and along bicellular contacts, and in the nucleus and perinuclear region. Compared with the well-studied TJ protein, zonula occludens-1, tricellulin expression was less marked at the cell membrane but more evident in the nuclear and perinuclear regions. The presence of tricellulin in cultured endothelial cells was corroborated by immunohistochemical and immunofluorescence staining in brain blood vessels, where it was colocalized with another TJ protein, claudin-5. Tricellulin mRNA was detected in neurons and astrocytes, whereas protein expression was observed in astrocytes but not in neurons, as shown by immunofluorescence analysis. This study reveals the presence and subcellular distribution of tricellulin in brain endothelial cells, both in vitro and in situ and its colocalization with other relevant TJ proteins. Moreover, it demonstrates the expression of the protein in astrocytes opening new avenues for future research to establish the biological significance of tricellulin expression in glial cells.  相似文献   

5.
After our initial report of a mammalian gene for arginine decarboxylase, an enzyme for the synthesis of agmatine from arginine, we have determined the regional expression of ADC in rat. We have analyzed the expression of ADC in rat brain regions by activity, protein and mRNA levels, and the regulation of expression in neuronal cells by RNA interference. In rat brain, ADC was widely expressed in major brain regions, with a substantial amount in hypothalamus, followed by cortex, and with least amounts in locus coeruleus and medulla. ADC mRNA was detected in primary astrocytes and C6 glioma cells. While no ADC message was detected in fresh neurons (3 days old), significant message appeared in differentiated neurons (3 weeks old). PC12 cells, treated with nerve growth factor, had higher ADC mRNA compared with naive cells. The siRNA mixture directed towards the N-terminal regions of ADC cDNA down-regulated the levels of mRNA and protein in cultured neurons/C6 glioma cells and these cells produced lower agmatine. Thus, this study demonstrates that ADC message is expressed in rat brain regions, that it is regulated in neuronal cells and that the down-regulation of ADC activity by specific siRNA leads to lower agmatine production.  相似文献   

6.
7.
In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.  相似文献   

8.
9.
Plasma phospholipid transfer protein (PLTP) is one of the key proteins in lipid and lipoprotein metabolism. We examined PLTP distribution in human brain using PLTP mRNA dot-blot, Northern blot, immunohistochemistry (IHC), Western blot, and phospholipid transfer activity assay analyses. PLTP mRNA of 1.8 kb was widely distributed in all the examined regions of the central nervous system at either comparable or slightly lower levels than in the other major organs, depending on the region. Cerebrospinal fluid phospholipid transfer activity represented 15% of the plasma activity, indicating active PLTP synthesis in the brain. Western blot and phosholipid transfer activity assay demonstrated secretion of active PLTP by neurons, microglia, and astrocytes in culture. IHC demonstrated PLTP presence in neurons, astrocytes, microglia, and oligodendroglia. Some neuronal groups, such as nucleus hypoglossus and CA2 neurons in hippocampus, ependymal layer, and choroid plexus were particularly strongly stained, with substantial glial and neuropil immunostaining throughout the brain. Comparison between brain tissues from patients with Alzheimer's disease (AD) and nonAD subjects revealed a significant increase (P = 0.02) in PLTP levels in brain tissue homogenates and increased PLTP immunostaining in AD.  相似文献   

10.
Gene PRSS3 on chromosome 9 of the human genome encodes, due to alternative splicing, both mesotrypsinogen and trypsinogen 4. Mesotrypsinogen has long been known as a minor component of trypsinogens expressed in human pancreas, while the mRNA for trypsinogen 4 has recently been identified in brain and other human tissues. We measured the amount of trypsinogen 4 mRNA and the quantity of the protein as well in 17 selected areas of the human brain. Our data suggest that human trypsinogen 4 is widely but unevenly distributed in the human brain. By immunohistochemistry, here we show that this protease is localized in neurons and glial cells, predominantly in astrocytes. In addition to cellular immunoreactivity, human trypsinogen 4 immunopositive dots were detected in the extracellular matrix, supporting the view that human trypsinogen 4 might be released from the cells under special conditions. Júlia Tóth and Erika Siklódi contributed equally to this work.  相似文献   

11.
12.
Aromatase, the enzyme responsible for the conversion of testosterone to estradiol, is found in the rat brain and is present in regions of the preoptic area, hypothalamus, and limbic system. Gonadal steroid hormones regulate aromatase activity levels in many brain regions, but not all. Using in situ hybridization, we examined the distribution of aromatase mRNA in the adult male forebrain, as well as the levels of aromatase mRNA in the brains of males and females, and the regulation by gonadal steroid hormones. In the adult male, many heavily labelled cells were found in the encapsulated bed nucleus of the stria terminalis (BNST), the medial preoptic nucleus (MPN), the ventro-medial nucleus (VMN), the medial amygdala (mAMY) and the cortical amygdala (CoAMY). The regional distribution of aromatase mRNA was similar in males and females, but males tended to have a greater number of aromatase mRNA-expressing cells in each region compared to females. Aromatase mRNA levels in the BNST, MPN, VMN and mAMY tended to be lower in castrated males than in intact males, whereas aromatase mRNA levels were unaltered by castration in the CoAMY. Further analysis of individual cells expressing aromatase mRNA suggests that aromatase mRNA may be regulated by steroid hormones differentially in specific populations of cells in regions where enzyme activity levels are steroid-hormone-dependent.  相似文献   

13.
Mutations in the MeCP2 gene cause Rett syndrome, a neurologic condition affecting primarily young girls. To gain insight into the normal function of MeCP2, we examined its temporal and spatial expression patterns, and immunoreactive prevalence, during late embryonic and perinatal brain development. MeCP2 mRNA was detected in most regions of the developing rat brain by the late embryonic stage. Regions displaying the strongest mRNA expression include the hippocampus, cortex, and cerebellum, and moderate expression was observed in most other brain regions. At the protein level, MeCP2 was strongly expressed in adult forebrain neurons, but was not detected in astrocytes. The nonubiquitous expression of MeCP2 was also observed in the embryonic cortex, as about one-third of acutely dissociated embryonic day 14 neuroepithelial cells failed to stain with MeCP2. To test whether MeCP2 expression correlates with neuronal differentiation, colocalization of MeCP2 expression with either the precursor cell marker nestin or the young neuronal marker beta-III tubulin was examined in the same acutely dissociated cortical cells. Although strong MeCP2 expression was detected in approximately 75% of beta-III tubulin-positive cells, only about 25% of nestin-positive precursor cells were MeCP2 positive. Further support for a correlation of MeCP2 expression with cell differentiation was observed in culture, where Western blot analysis during the in vitro differentiation of PC12, NG108-15, and SH-SY5Y cells revealed that MeCP2 levels increased as the cells acquired a more differentiated phenotype. This increase was associated with differentiation, as MeCP2 expression levels did not vary within different phases of the cell cycle. Taken together, these data support a role for MeCP2 in the establishment and/or maintenance of neuronal maturity.  相似文献   

14.
Brain is a highly-oxidative organ, but during activation, glycolytic flux is preferentially up-regulated even though oxygen supply is adequate. The biochemical and cellular basis of metabolic changes during brain activation and the fate of lactate produced within brain are important, unresolved issues central to understanding brain function, brain images, and spectroscopic data. Because in vivo brain imaging studies reveal rapid efflux of labeled glucose metabolites during activation, lactate trafficking among astrocytes and between astrocytes and neurons was examined after devising specific, real-time, sensitive enzymatic fluorescent assays to measure lactate and glucose levels in single cells in adult rat brain slices. Astrocytes have a 2- to 4-fold faster and higher capacity for lactate uptake from extracellular fluid and for lactate dispersal via the astrocytic syncytium compared to neuronal lactate uptake from extracellular fluid or shuttling of lactate to neurons from neighboring astrocytes. Astrocytes can also supply glucose to neurons as well as glucose can be taken up by neurons from extracellular fluid. Astrocytic networks can provide neuronal fuel and quickly remove lactate from activated glycolytic domains, and the lactate can be dispersed widely throughout the syncytium to endfeet along the vasculature for release to blood or other brain regions via perivascular fluid flow.  相似文献   

15.
In an effort to identify astrocyte-derived molecules that may be intimately associated with progression of Alzheimer's disease (AD), Lib, a type I transmembrane protein belonging to leucine-rich repeat superfamily, has been identified as a distinctly inducible gene, responsive to beta-amyloid as well as pro-inflammatory cytokines in astrocytes. To evaluate the roles of Lib in AD, we investigated Lib expression in AD brain. In non-AD brain, Lib mRNA has been detected in neurons but not in quiescent astrocytes. On the contrary, in AD brain, Lib mRNA is expressed in activated astrocytes associated with senile plaques, but not expressed in neurons around lesions. Lib-expressing glioma cells displayed promotion of migration ability through reconstituted extracellular matrix and recombinant Lib protein bound to constituents of extracellular matrix. These observations suggest that Lib may contribute to regulation of cell-matrix adhesion interactions with respect to astrocyte recruitment around senile plaques in AD brain.  相似文献   

16.
Lipocalin 2 (LCN2) is produced by mammalian hosts to bind bacterial siderophore and sequester free iron as part of an innate immune response, and could also play a role in tissue iron homeostasis, but thus far, little is known about its expression in the CNS. The present study was carried out to study the expression of the lipocalin in the normal rat brain and after neuronal injury induced by kainate (KA). Low levels of LCN2 mRNA and protein expression were detected in most regions of the normal brain except the olfactory bulb, brainstem and cerebellum. KA lesions resulted in damage to the hippocampus, leading to an early increase at three days and a sustained elevation in LCN2 mRNA level of 16-fold, and protein expression at 80-fold in the lesioned tissue compared to controls at 2 weeks post-KA injection. The sustained elevation in mRNA expression was not detected among other lipocalins surveyed using real-time RT-PCR - apoD, PGDS, Rbp4 and LCN5. Single and double immunostaining confirmed that LCN2 is present in astrocytes in the olfactory bulb, brainstem and cerebellum of the normal brain, and reactive astrocytes in the KA-lesioned hippocampus. In conclusion, the present study showed LCN2 to be present in select brain regions, and is upregulated in astrocytes after neuronal injury induced by kainate. We postulate that, as in the periphery, LCN2 may have a role in iron transport or trafficking in the CNS.  相似文献   

17.
Since astrocytes may sense and respond to neuronal activity these cells are now considered important players in brain signaling. Astrocytes form large gap junction coupled syncytia allowing them to clear the extracellular space from K+ and neurotransmitters accumulating during neuronal activity, and redistribute it to sites of lower extracellular concentrations. Increasing evidence suggests a crucial role for dysfunctional astrocytes in the etiology of epilepsy. Notably, alterations in expression, localization and function of astroglial K+ channels as well as impaired K+ buffering was observed in specimens from patients with pharmacoresistant temporal lobe epilepsy and in chronic epilepsy models. Altered astroglial gap junction coupling has also been reported in epileptic tissue which, however, seems to play a dual role: (i) junctional coupling counteracts hyperactivity by facilitating clearance of elevated extracellular K+ and glutamate while (ii) it also provides a pathway for energetic substrates and fuels neuronal activity. Dysfunctional astrocytes should be considered promising targets for new therapeutic strategies.  相似文献   

18.
The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of peripheral cholesterol efflux and plasma high density lipoprotein metabolism. In adult rat brain we found high expression of ABCA1 in neurons in the hypothalamus, thalamus, amygdala, cholinergic basal forebrain, and hippocampus. Large neurons of the cholinergic nucleus basalis together with CA1 and CA3 pyramidal neurons were among the most abundantly immunolabeled neurons. Glia cells were largely negative. Because cholesterol homeostasis may have an essential role in central nervous system function and neurodegeneration, we examined ABCA1 expression and function in different brain cell types using cultures of primary neurons, astrocytes, and microglia isolated from embryonic rat brain. The basal ABCA1 mRNA and protein levels detected in these cell types were increased markedly after exposure to oxysterols and 9-cis-retinoic acid, which are ligands for the nuclear hormone liver X receptors and retinoic X receptors, respectively. Functionally, the increased ABCA1 expression caused by these ligands was followed by elevated apoA-I- and apoE-specific cholesterol efflux in neurons and glia. In non-neuronal and neuronal cells overexpressing a human Swedish variant of amyloid precursor protein, 22R-hydroxycholesterol and 9-cis-retinoic acid induced ABCA1 expression and increased apoA-I-mediated cholesterol efflux consequently decreasing cellular cholesterol content. More importantly, we demonstrated that these ligands alone or in combination with apoA-I caused a substantial reduction in the stability of amyloid precursor protein C-terminal fragments and decreased amyloid beta production. These effects of 22R-hydroxycholesterol may provide a novel strategy to decrease amyloid beta secretion and consequently reduce the amyloid burden in the brain.  相似文献   

19.
Brain fatty acid binding protein (Fabp7), which is important in early nervous system development, is expressed in astrocytes and neuronal cell precursors in mature brain. We report here that levels of Fabp7 mRNA in adult murine brain change over a 24 hour period. Unlike Fabp5, a fatty acid binding protein that is expressed widely in various cell types within brain, RNA analysis revealed that Fabp7 mRNA levels were elevated during the light period and lower during dark in brain regions involved in sleep and activity mechanisms. This pattern of Fabp7 mRNA expression was confirmed using in situ hybridization and found to occur throughout the entire brain. Changes in the intracellular distribution of Fabp7 mRNA were also evident over a 24 hour period. Diurnal changes in Fabp7, however, were not found in postnatal day 6 brain, when astrocytes are not yet mature. In contrast, granule cell precursors of the subgranular zone of adult hippocampus did undergo diurnal changes in Fabp7 expression. These changes paralleled oscillations in Fabp7 mRNA throughout the brain suggesting that cell-coordinated signals likely control brain-wide Fabp7 mRNA expression. Immunoblots revealed that Fabp7 protein levels also underwent diurnal changes in abundance, with peak levels occurring in the dark period. Of clock or clock-regulated genes, the synchronized, global cycling pattern of Fabp7 expression is unique and implicates glial cells in the response or modulation of activity and/or circadian rhythms.  相似文献   

20.
The effects of corticosteroids in the brain are mediated through the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). We used a sensitive competitive RT-PCR assay to quantify the amounts of GR and MR mRNA in human brain tissue specimens from patients with focal epilepsies. GR and MR mRNAs were expressed at approximately the same levels in the temporal lobe, frontal lobe, and hippocampus as compared to tissues with high glucocorticoid/mineralocorticoid receptor expression (liver/kidney). GR and MR mRNA concentrations in the temporal lobe increased markedly during childhood and reached adult levels at puberty. GR and MR mRNA expression was significantly higher in the temporal lobe and frontal lobe cortex of women than in those of men. In women, MR and GR mRNA concentrations were markedly lower in hippocampal tissue than in frontal and temporal lobe cortex tissue. In conclusion, our data demonstrate sex- and site-dependent expression of corticosteroid receptor mRNA in the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号