共查询到20条相似文献,搜索用时 15 毫秒
1.
DAVID S. SAUNDERS 《Physiological Entomology》2012,37(3):207-218
This review examines the spectral sensitivities of photoperiodic responses in insects and mites in relation to circadian‐based models for the photoperiodic clock. It concludes that there are probably a number of different photoreceptors at both the organ and molecular levels. These latter probably fall into two classes: (i) a blue‐light sensitive photoreceptor and (ii) a range of opsins (i.e. opsin proteins conjugated with a vitamin A based pigment) absorbing light at a range of wavelengths. In flesh flies (Sarcophaga spp. and possibly other higher Diptera), which are considered to exemplify the ‘external coincidence’ model, entrainment of the photoperiodic oscillator probably involves a blue‐light photoreceptor of Drosophila‐type CRYPTOCHROME (CRY1) absorbing maximally at approximately 470 nm, whereas opsins absorbing at longer wavelengths may be involved in the photo‐inductive process (diapause/nondiapause regulation) that occurs when dawn light coincides with the photo‐inducible phase. In the parasitic wasp Nasonia vitripennis, on the other hand, a species that lacks CRY1 but expresses the nonphotosensitive ‘mammalian‐type’ CRY2, and is considered to exemplify ‘internal coincidence’, entrainment of the dawn and dusk oscillators may involve opsin‐based photoreceptors absorbing light at longer wavelengths as far as the red end of the spectrum. In the Lepidoptera, which express both CRY1 and CRY2, properties of both external and internal coincidence may be evident. The presence or absence of cry1 in the genome may thus emerge as a key to the photoperiodic mechanism on its light input pathway. 相似文献
2.
3.
S.L. Kondrashev M.S. Kornienko V.P. Gnyubkina L.T. Frolova 《Journal of morphology》2016,277(4):472-481
The retina of anchovies is characterized by an unusual arrangement and ultrastructure of cones. In the retina of Japanese anchovies, Engraulis japonicus, three types of cones are distributed into rows. The nasal, central, temporal, and ventro‐temporal regions of the retina were occupied exclusively by the long and short cones. Triple cones, made up of two lateral components and one smaller central component, were found only in the dorsal and ventro‐nasal retinal regions. In the outer segments of all short and long cones from the ventro‐temporal region, the lamellae were oriented along the cell axis and were perpendicular to the lamellae in the long cones, providing a morphological basis for the detection of polarization. This lamellar orientation is unique to all vertebrates. The cones were examined with respect to regional differentiation in their size and spectral properties via light microscopy, transmission electron microscopy, and microspectrophotometry. Various dimensions of cones were measured in preparations of isolated cells. The cones from the ventro‐temporal region had different dimensions than cones of the same type located in other retinal regions. Triple cones from the dorsal region were significantly larger than triple cones from the ventro‐nasal region. The spectral absorbance of the lateral components of triple cones in the ventro‐nasal retina was identical to the absorbance of all long and short cones from the ventro‐temporal region. These are shifted to shorter wavelengths relative to the absorbance of the lateral components of the triple cones located in the dorsal retina. Thus, the retina of the Japanese anchovy shows some features of regional specialization common in other fishes that improves spatial resolution for the upwards and forwards visual axis and provides spectral tuning in downwelling light environment. That results from the differentiation of cone types by size and by different spectral sensitivity of various retinal areas. J. Morphol. 277:472–481, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
4.
Thomas W. Cronin Michael J. Bok N. Justin Marshall Roy L. Caldwell 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1636)
Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red. 相似文献
5.
Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors 总被引:4,自引:0,他引:4
Nathan S. Hart Misha Vorobyev 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2005,191(4):381-392
Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (max) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (cut) of their respective C-, Y- and R-type oil droplets can be predicted from the max of the ultraviolet- (UVS)/violet- (VS) sensitive visual pigment. 相似文献
6.
The spectral sensitivity of photoreceptors of the tropical bees Melipona quadrifasciata, M. marginata, and Trigona spinipes were measured on-line with a rapid constant response amplitude method. The results indicate that although these bees forage in different habitats they have the same set of photoreceptors with sensitivity maxima in ultra-violet, blue and green. 相似文献
7.
During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. 相似文献
8.
The electroretinographic spectral sensitivity of the cricket compound eyes shows the presence of two receptor types, a dominant one at 520 nm and another in the near-u.v. (λmax 355 ± 5 nm) under dark- and intense chromatic adaptation conditions (Fig. 3). The waveform of the electrical responses elicited by short-wavelength stimuli differ from those elicited by long wavelength stimuli (Fig. 1). 相似文献
9.
THOMAS F. DÖRING SASCHA M. KIRCHNER PETER SKORUPSKI JIM HARDIE 《Physiological Entomology》2011,36(4):392-396
Intracellular recordings are obtained from photoreceptors in the retina of winged (alate) pea aphids Acyrthosiphon pisum (Harris). The responses to monochromatic light, applied in 10‐nm steps over the range 320–650 nm, reveal that all recordings are from green receptors and the spectral sensitivity function of these photoreceptors peaks at 518 nm. A comparison between the spectral sensitivity of the green receptors and extracellular electroretinogram recordings suggests that additional sensitivity to the short‐wavelength light (ultraviolet and/or blue) is also likely to be present in the compound eye of pea aphids. An analysis of the pea aphid genome, comparing its translated nucleotide sequences with the those of the opsin genes of other insect species, supports this electrophysiological finding, although it could not be established whether A. pisum, in addition to the green receptor, has both blue and ultraviolet receptors in the compound eye. The implications of these results for the visual ecology of herbivorous insects are discussed. 相似文献
10.
Koshitaka H Kinoshita M Vorobyev M Arikawa K 《Proceedings. Biological sciences / The Royal Society》2008,275(1637):947-954
This paper presents the first evidence of tetrachromacy among invertebrates. The Japanese yellow swallowtail butterfly, Papilio xuthus, uses colour vision when foraging. The retina of Papilio is furnished with eight varieties of spectral receptors of six classes that are the ultraviolet (UV), violet, blue (narrow-band and wide-band), green (single-peaked and double-peaked), red and broad-band classes. We investigated whether all of the spectral receptors are involved in colour vision by measuring the wavelength discrimination ability of foraging Papilio. We trained Papilio to take nectar while seeing a certain monochromatic light. We then let the trained Papilio choose between two lights of different wavelengths and determined the minimum discriminable wavelength difference Deltalambda. The Deltalambda function of Papilio has three minima at approximately 430, 480 and 560nm, where the Deltalambda values approximately 1nm. This is the smallest value found for wavelength discrimination so far, including that of humans. The profile of the Deltalambda function of Papilio can be best reproduced by postulating that the UV, blue (narrow-band and wide-band), green (double-peaked) and red classes are involved in foraging. Papilio colour vision is therefore tetrachromatic. 相似文献
11.
Paul P. M. Schnetkamp 《The Journal of membrane biology》1985,88(3):263-275
Summary The permeability properties of the plasma membrane of intact rod outer segments purified from bovine retinas (ROS) were studied with the aid of the optical probe neutral red as described in the companion paper. The following observations were made: (1) Electrical shunting of ROS membranes greatly stimulated Na+ and K+ transport, suggesting that this transport reflects Na+ and K+ currents, respectively. The dissipation of a Na+ gradient across the plasma membrane occurred with a half-time of 30 sec at 25°C. (2) The Na+ permeability was progressively inhibited when the external Ca2+ concentration was raised from 1 m to 20mm. A similar Ca2+ dependence was observed for H+ and Li+ transport. The Na+ permeability was not affected when the total internal Ca2+ content of ROS was varied between 0.1 mol Ca2+/mol rhodopsin and 7 mol Ca2+/mol rhodopsin, or when the free internal Ca2+ concentration was varied between 0.1 and 50 m. (3) The K+ permeability was progressively stimulated when the external Ca2+ concentration was raised from 0.001 to 1 m, whereas a further increase to 20mm was without effect. A similar Ca2+ dependence was observed for Rb+ and Cs+ transport. (4) At an external Ca2+ concentration in the micromolar range the rate of transport decreased in the order: Na+>K+=H+>Cs+>Li+. (5) Na+ fluxes depended in a sigmoidal way on the external Na+ concentration, suggesting that sodium ions move in pairs. The concentration dependence of uniport Na+ transport and that of Na+-stimulated Ca2+ efflux (exchange or antiport transport) were very similar. 相似文献
12.
Photoreceptor adaptation ensures appropriate visual responses during changing light conditions and contributes to colour constancy. We used behavioural tests to compare UV-sensitivity of budgerigars after adaptation to UV-rich and UV-poor backgrounds. In the latter case, we found lower UV-sensitivity than expected, which could be the result of photon-shot noise corrupting cone signal robustness or nonlinear background adaptation. We suggest that nonlinear adaptation may be necessary for allowing cones to discriminate UV-rich signals, such as bird plumage colours, against UV-poor natural backgrounds. 相似文献
13.
MATTHEW L. M. LIM DAIQIN LI 《Biological journal of the Linnean Society. Linnean Society of London》2006,89(3):397-406
Jumping spiders (Salticidae) have acute vision with some cells in the retina that are sensitive to ultraviolet (UV) spectra (< 400 nm). However, no study has documented the use of UV signals in salticids. To appreciate the function of UV vision, it is necessary to characterize the UV colours of salticids. In the present study, the UV and human-visible wavelengths of a tropical ornate salticid spider, Cosmophasis umbratica , were analysed using reflectance spectrometry to obtain evidence of sex-specific UV colours. An absolute sexual dimorphism in the UV colours of this salticid species was found. All of the body parts of adult males that are displayed to conspecifics during intra-specific interactions reflected UV (300–400 nm) light, whereas the adult females and juveniles did not reflect UV light from any body part. A great deal of variation was also found in the UV wavebands among males. This is the first full UV characterization of a salticid spider and the first study to demonstrate an extreme sexual UV dimorphism in jumping spiders. The findings obtained provide evidence that UV reflectance may comprise important sexual signals in jumping spiders. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 397–406. 相似文献
14.
Olle Lind Mindaugas Mitkus Peter Olsson Almut Kelber 《Proceedings. Biological sciences / The Royal Society》2014,281(1774)
Ultraviolet (UV)-sensitive visual pigments are widespread in the animal kingdom but many animals, for example primates, block UV light from reaching their retina by pigmented lenses. Birds have UV-sensitive (UVS) visual pigments with sensitivity maxima around 360–373 nm (UVS) or 402–426 nm (violet-sensitive, VS). We describe how these pigments are matched by the ocular media transmittance in 38 bird species. Birds with UVS pigments have ocular media that transmit more UV light (wavelength of 50% transmittance, λT0.5, 323 nm) than birds with VS pigments (λT0.5, 358 nm). Yet, visual models predict that colour discrimination in bright light is mostly dependent on the visual pigment (UVS or VS) and little on the ocular media. We hypothesize that the precise spectral tuning of the ocular media is mostly relevant for detecting weak UV signals, e.g. in dim hollow-nests of passerines and parrots. The correlation between eye size and UV transparency of the ocular media suggests little or no lens pigmentation. Therefore, only small birds gain the full advantage from shifting pigment sensitivity from VS to UVS. On the other hand, some birds with VS pigments have unexpectedly low UV transmission of the ocular media, probably because of UV blocking lens pigmentation. 相似文献
15.
Kamermans M Hawryshyn C 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1565):742-756
In this review, we will discuss the recent literature on fish polarization vision and we will present a model on how the retina processes polarization signals. The model is based on a general retinal-processing scheme and will be compared with the available electrophysiological data on polarization processing in the retina. The results of this model will help illustrate the functional significance of polarization vision for both feeding behaviour and navigation. First, we examine the linkage between structure and function in polarization vision in general. 相似文献
16.
Summary Unitary currents through cGMP-dependent channels of retinal rods are observed following incorporation into planar lipid bilayers of native vesicles from purified rod outer segment membranes washed free of soluble and peripheral proteins. The influence of the concentration of cGMP, inhibitors (cis-diltiazem, tetracaine and Ag+) and divalent cations (Ca2+, Mg2+, and Co2+) on the conductance and open probability of the channel is described, as well as the voltage dependence of these effects. The cGMP dependence suggests the existence of four binding sites for cGMP and reveals that sequential binding of four cGMP molecules corresponds to the opening of four discrete conductance levels. Finally, we provide conclusive evidence that activated G-protein does not directly inactivate the cGMP-dependent channels of bovine retinal rods. 相似文献
17.
Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds
下载免费PDF全文

Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet‐sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV‐sensitive (UVS) cones maximally sensitive at 360–370 nm. The reasons for VS–UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS‐cone vision is linked to plumage colours so that visual sensitivity and feather coloration are ‘matched’. This leads to the specific prediction that UVS‐cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS‐bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS‐cone vision and plumage colour evolution. Instead, we suggest that UVS‐cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones. 相似文献
18.
THORE J. BERGMAN JACINTA C. BEEHNER 《Biological journal of the Linnean Society. Linnean Society of London》2008,94(2):231-240
Adaptive hypotheses about colour variation are widespread in behavioural ecology, and several methods of objective colour assessment have been proposed and validated for use in a wide variety of taxa. However, to date, the most objective and reliable methods of assessing colour are not readily applied to wild animals. In the present study, we present a simple method for assessing colour in unrestrained, wild subjects using digital photography. The method we describe uses a digital camera, a colour standard, and colour analysis software, and can be used to measure any part of the visible colour spectrum. We demonstrate that the method: (1) is accurate and precise across different light conditions; (2) satisfies previous criteria regarding linearity and red, green, and blue equality; and (3) can be independently validated visually. In contrast with previous digital methods, this method can be used under natural light conditions and can be readily applied to subjects in their natural habitat. To illustrate this, we use the method to measure chest colour in wild geladas ( Theropithecus gelada ). Unique among primates, geladas have a red patch of skin on their chest and neck, which, for males, is thought to be a sexually selected signal. Offering some support to this hypothesis, we found differences in chest 'redness' for males across different age groups, with males in their reproductive prime exhibiting the reddest chests. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 231–240. 相似文献
19.
Although tropical coral reefs are one of the most spectrally complex habitats, there is relatively little known about colour vision of reef fish. In this study, we measured the spectral sensitivity of an endemic Hawaiian coral reef fish, Thalassoma duperrey (family Labridae), and assessed the possible role of visual sensitivity in mediating intraspecific communication. Electrophysiological recordings of compound action potentials from retinal ganglion cells were used to generate spectral sensitivity curves for specific wavelengths (380–620nm). We found at least 2 sensitivity peaks for the on response (max=460, 550nm). The off response lacked a short wavelength mechanism but a medium wavelength mechanism (max=545nm) and a longwave mechanism (max=570nm) were found. To quantify the visual stimulus provided by a conspecific individual, spectral reflectance from the colour pattern of T. duperrey was measured with a spectroradiometer. Luminance and spectral contrast were computed between colour patches of the pattern and between the patches and natural backgrounds (i.e., water and coral). Reflectance from the blue head and contrast from the blue, green and red patches matched the sensitivity maxima of T. duperrey, although this depended on the type of background. Our results indicate that T. duperrey should be able to visually detect the colour pattern of a conspecific fish and that T. duperrey's visual system is designed to enhance target detection in the coral reef habitat with matched and offset cone mechanisms. 相似文献
20.
MARTIN HEINDL HANS WINKLER 《Biological journal of the Linnean Society. Linnean Society of London》2003,80(4):647-658
We studied the interaction of ambient light and plumage colour in four sympatric neotropical manakin species which differ in signal colours and vertical lek placement. We estimated bird conspicuousness by modelling chromatic and achromatic background contrast of signal colours in tetrachromatic colour space. Spectral composition of ambient light varies gradually from the understory to the canopy and may affect where manakins lek. Under the given spatial requirements for their horizontal display flights, manakins place their leks at that position along the vertical gradient where ambient light increases chromatic and/or achromatic contrast of their colour signals against the background and/or within their coloration patterns. This suggests that physical factors can be important for placement of display sites, since they may critically influence the effectiveness and efficiency of conspecific communication. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 647–658. 相似文献