首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the involvement of chlorogenic acid (CGA) and salicylic acid (SA) in the stress-induced flowering of Pharbitis nil (synonym Ipomoea nil). The incorporation efficiency of exogenously applied CGA and the deactivation rate of incorporated CGA were determined in cotyledons by high-performance liquid chromatography. The assay plants could not incorporate a sufficient amount of CGA via roots. The perfusion technique by which the assay solution was forced into the plant from the cut end of the hypocotyl improved the efficiency of CGA incorporation. However, no flower-inducing activity was detected, indicating that CGA was not involved in flowering. It was concluded that the close correlation between CGA content and flowering response is merely coincidence or a parallelism. Flowering under long-day conditions induced by low-temperature stress was completely inhibited by aminooxyacetic acid (AOA), an inhibitor of phenylalanine ammonialyase. The flower-inhibiting effect of AOA was nullified by co-applied t-cinnamic acid and by benzoic acid. This indicates that the metabolic pathway from t-cinnamic acid to SA via benzoic acid is involved in the stress-induced flowering. The results indicate that the metabolic pathway of SA is involved in the stress-induced flowering of P. nil not the metabolic pathway of CGA.  相似文献   

2.
Light is one of the most important environmental factors influencing the induction of flowering in plants. Light is absorbed by specific photoreceptors – the phytochromes and cryptochromes system – which fulfil a sensory and a regulatory function in the process. The absorption of light by phytochromes initiates a cascade of related biochemical events in responsive cells, and subsequently changes plant growth and development.

Induction of flowering is controlled by several paths. One is triggered by the guanosine-3′:5′-cyclic monophosphate (cGMP) level. Thus, the aim of our study was to investigate the role of cGMP in phytochrome-controlled flowering.

It is best to conduct such research on short-day plants because the photoperiodic reactions of only these plants are totally unequivocal. The most commonly used plant is the model short-day plant Pharbitis nil.

The seedlings of P. nil were cultivated under special photoperiodic conditions: 72-h-long darkness, 24-h-long white light with low intensity and 24-h-long inductive night. Such light conditions cause a degradation of the light-labile phytochrome. Far red (FR) treatment before night causes inactivation of the remaining light-stable phytochrome. During the 24-h-long inductive darkness period, the total amount of cGMP in cotyledons underwent fluctuations, with maxima at the 4th, 8th and 14th hours. When plants were treated with FR before the long night, fluctuations were not observed. A red light pulse given after FR treatment could reverse the effect induced by FR, and the oscillation in the cGMP level was observed again.

Because the intracellular level of cGMP is controlled by the opposite action of guanylyl cyclases (GCs) and phosphodiesterases (PDEs), we first tested whether accumulation of the nucleotide in P. nil tissue may be changed after treatment with a GC stimulator or PDE inhibitor.

Accumulation of the nucleotide in P. nil cotyledons treated with a stimulator of cGMP synthesis (sodium nitroprusside) was markedly (approximately 80%) higher. It was highest in the presence of dipyridamole, whereas 3-isobutyl-1-methylxanthine did not significantly affect cGMP level.

These results show that the analysed compounds were able to penetrate the cotyledons’ tissue, and that they influenced enzyme activity and cGMP accumulation.

FR light applied at the end of the 24-h-long white light period inhibited flowering. Exogenous cGMP added on cotyledons could reverse the effect of FR, especially when the compound was applied in the first half of the long night. Flowering was also promoted by exogenous application of guanylyl cyclase activator and phosphodiesterase inhibitors, and in particular dipyridamole.

The results obtained suggest that an endogenous cGMP system could participate in the mechanism of a phytochrome-controlled flowering in P. nil.  相似文献   


3.
Abscisic acid (ABA) has been reported to have diverse effects on photoperiodic flowering. Activity of a natural ABA, (+)-( S )-abscisic acid (S-ABA), was recently suggested to be somewhat different from that of racemic ABA, which has been used in previous work. Use of S-ABA might enable clarification of the role of ABA in flowering. S-ABA inhibited flowering of the short-day plant Pharbitis nil (cv. Violet) when given before or 4 h after the start of a 14-h inductive dark period, and promoted flowering when given 12 h after the start of the dark period or later. The flower-promoting effect was observed when ABA was applied to the shoot apex. These results indicate that ABA has a dual effect on photoperiodic flowering of P. nil : it may inhibit the time-measuring process as well as promote some processes that proceed after generation of the flowering stimulus.  相似文献   

4.
Abscisic acid (ABA) has been reported to have diverse effects on photoperiodic flowering. Activity of a natural ABA, (+)-( S )-abscisic acid (S-ABA), was recently suggested to be somewhat different from that of racemic ABA, which has been used in previous work. Use of S-ABA might enable clarification of the role of ABA in flowering. S-ABA inhibited flowering of the short-day plant Pharbitis nil (cv. Violet) when given before or 4 h after the start of a 14-h inductive dark period, and promoted flowering when given 12 h after the start of the dark period or later. The flower-promoting effect was observed when ABA was applied to the shoot apex. These results indicate that ABA has a dual effect on photoperiodic flowering of P. nil : it may inhibit the time-measuring process as well as promote some processes that proceed after generation of the flowering stimulus.  相似文献   

5.
Effects of abscisic acid on flowering in Pharbitis nil   总被引:1,自引:0,他引:1  
Under continuous light, flowering of Pharbitis seedlings wasnot induced by abscisic acid (ABA) treatment. Under short daytreatment, flowering was slightly enhanced by ABA at 0.2 and0.4 mg/liter. Stem elongation was considerably inhibited by25 and 50 mg/liter of ABA irrespective of day length. (Received October 21, 1972; )  相似文献   

6.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

7.
Acetylsalicylic acid, which applied to cotyledons of the short day plant Pharbitis nil prior to an inductive 16-h dark period inhibits flowering by 90 %, is converted to salicylic acid and to a lesser extent to gentisic acid in the cotyledons during this 16-h dark period. Our results confirmed that salicylic acid and gentisic acid are responsible for the inhibition of flowering. They also inhibit prostaglandin biosynthesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
There is a semidian (≈12 h) rhythm in the flowering response of the short-day plant Pharbitis nil Choisy following 90 min exposure to either far-red light/darkness or a temperature drop (27 °C to 12 °C) given at various times in constant conditions before an inductive dark period. This semidian rhythmic response to the temperature-drop pretreatments in the light is also evident through the inductive dark period without change of phase. Furthermore, those pretreatments which increase flowering also advance the time of maximum sensitivity to red light (R) interruptions of the dark period by up to 1.5 h and shorten the critical night length. Conversely, pretreatments which reduce flowering delay the time of maximum R inhibition by up to 1.5 h and increase the critical night length by the same amount. However the phase of a circadian rhythm of flowering response had no effect on either the time of maximum R inhibition or the critical night length. Thus, the semidian rhythm determines both the time of maximum R inhibition and the critical night length in Pharbitis. Received: 8 November 1997 / Accepted: 7 January 1998  相似文献   

9.
Irene Bollig 《Planta》1977,135(2):137-142
The phase shifting effect of red light on both the leaf movement rhythm, and on the rhythm of responsiveness of photoperiodic flower induction towards short light breaks (10 min red light), has been studied in Pharbitis nil, strain Violet, and comparisons between the two rhythms have been made. The phase angle differences between the rhythms after a phase shift with 2 or 6 h of red light given at different times during a long dark period were not constant. The results indicate the involvement of two different clocks controlling leaf movement and photoperiodic flower induction.Abbreviations DD continuous darkness - l:D x:y light/dark cycles with x hours of light and y hours of darkness - PPR rhythm of photoperiodic responsiveness towards light break  相似文献   

10.
Benzoic acid, sulfosalicylic acid and methyl salicylic acid wereevaluated for their regulatory role in inducing multiple stress tolerance inbean (Phaseolus vulgaris cv Brown Beauty) and tomato(Lycopersicum esculentum cv Romano) plants. All threemolecules were effective in inducing tolerance to heat, drought and chillingstress similar to that reported previously for salicylic and acetylsalicylicacids. Benzoic acid is effective at lower concentrations than salicylic acid orits derivatives. The benzoic acid structural portion is common to all fivemolecules and is the most likely basic functional molecular structure impartingstress tolerance in plants.  相似文献   

11.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of aspirin and salicylic acid in transdermal perfusates. The compounds were separated on a C8 Nucleosil column (5 μm, 250×4.6 mm) using a mobile phase containing a mixture of water–acetonitrile–orthophosphoric acid (650:350:2, v/v/v) and a flow-rate of 1 ml/min. The transdermal samples were in phosphate-buffered saline (PBS) and could be injected directly onto the HPLC system. The method was reproducible with inter-day R.S.D. values of no greater than 3.46 and 2.60% for aspirin and salicylic acid, respectively. The method was linear over the concentration range 0.2–5.0 μg/ml and had a limit of detection of 0.05 μg/ml for both compounds. For certain samples, it was necessary to ensure that no transmembrane leakage of the aspirin prodrugs had occurred. In these cases, a gradient was introduced by increasing the acetonitrile content of the mobile phase after the salicylic acid had eluted. The method has been applied to the determination of aspirin and salicylic acid in PBS following in vitro application of the compounds to mouse skin samples.  相似文献   

12.
The determination of salicylic acid (SA), a metabolite of aspirin, in human serum was developed using capillary zone electrophoresis (CZE) with diode array detection. The reproducibility of separation and quantification with CZE analysis of the extract of SA from human serum was appropriate for the intra- and inter-day assay coefficients. A high correlation was revealed between the serum SA levels in volunteers determined by CZE and those determined by a fluorescence polarization immunoassay (r=0.973, n=12), although the former values were slightly higher than the latter. There were no peaks interfering with the assay of SA by internal standard method. This CZE method could provide a simple and efficient method for monitoring SA in patients.  相似文献   

13.
This study describes a HPLC method to determine the concentrations of acetylsalicylic acid (ASA) and salicylic acid (SA) in human stratum corneum and in plasma. The stratum corneum layers for ASA/SA analysis were removed from three patients with postherpetic hyperalgesia treated with topical and oral aspirin. Blood samples were also collected from the same patients. Tape strippings were placed in acetonitrile and sonicated for 15 min. After centrifuging, aliquots of the supernatant were injected into the chromatograph. ASA and SA from plasma samples were extracted on Isolute C8 columns. Due to interfering peaks in the tape samples, HPLC conditions were slightly different for tape and plasma samples. ASA and SA were separated on a LiChrospher 100 RP-18 column at 1 ml/min using a water–phosphate buffer (pH 2.5)–acetonitrile mobile phase (35:40:25, v/v/v). A linear response to quantities of ASA from 0.1 to 100 μg/cm2 and of SA from 0.1 to 5 μg/cm2 in tape and to quantities of ASA 0.1 to 2 μg/ml and 1 to 50 μg/ml was obtained and the recovery from tape and plasma samples was over 98%. The method is sensitive (0.1 μg/cm2) and specific enough to allow the determination of the drugs in the skin not only after topical but also after oral administration. A good sensitivity was also obtained in plasma (0.1 μg/ml) allowing study of the kinetics of ASA and SA in plasma after oral administration. Concentrations of ASA after topical administration were 100–200 times higher than after oral administration. Plasma levels of ASA and SA after oral administration were similar to those previously found. No ASA or SA were detected in plasma after topical ASA administration.  相似文献   

14.
The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL.  相似文献   

15.
The effect of the exogenous application of polyamines on the flowering induction of the short-day plant Pharbtis nil was investigated. Putrescine, spermidine and spermine applied on the cotyledons of 4-day seedlings had no significant effect on the flowering of this plant under conditions of full induction caused by a 16-hour-long inductive night. Under the conditions of partial induction caused by a 13-hour-long subinductive night, polyamines inhibit or stimulate flowering, depending on the time of application. Also, inhibitors of the biosynthesis of polyamines influenced the flowering process. Analysis of endogenous polyamines revealed significant fluctuations in their content in cotyledons during an inductive night, as well as under continuous light conditions. Particularly large changes occurred in spermidine and spermine levels. The putrescine level in induced seedlings was lower than in non-induced ones. However, induced seedlings contained a higher level of spermine and spermidine. The highest spermidine and spermine levels were observed at the 8th h of the night, although the total concentration of spermine during photoinduction was always 2–3 times lower than that of spermidine. A break in the inductive night, leading to a complete inhibition of flowering, had caused significant changes in the polyamine level by the end of the night. The results suggest that the flowering induction of Pharbitis nil took place at a low putrescine level and increased spermidine and spermine levels.  相似文献   

16.
A study has been made on the changes of ATP and protein content in cotyledons and apices of Pharbitis nil after flowering induction. Protein content of the cotyledons which have just got through the induction is 68% higher than that of the control, but the difference trends to disappear there after. The. difference of protein content between the induced and uninduced apices is not so obvious in the first three days after induction, but quite evident on the fourth day (30% higher in the induced apices) suggesting that there is some relationship between protein metabolism and flowering induction both in the cotyledons and in the apices. Just after the seedlings have been induced, ATP content of the cotyledons is getting much (134%) higher than that of the control and the tendency is retained towards the fourth day after induction. Generally ATP content in apices is one order of magnitude higher than that in cotyledons. Although ATP content in the apices is only slightly higher than that of the control soon after induction, it gains quite a lot in the second day until the fifth day the end of our experiment. In the third day after induction ATP level in the apices reaehs to the maximum (20.6×10-2 μmol/g, apices) which is 37% higher than that of the control. The results show that flowering induction is bound to be followed by increase of proteins and ATP both in apices and in cotyledoms. It also. shows both formation of the stimulus in induced cotyledons and evocation in the apices might be all concerned in expression of some genes and synthesis of new RNA and protein. According to the maximum peak of ATP in the apices and cotyledons appeared in 3rd to 4th day after induction, it seems that the inductive effect both in the cotyledons and apices might continue for some time under the following uninduced condition.  相似文献   

17.
Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures.  相似文献   

18.
Suge  Hiroshi 《Plant & cell physiology》1980,21(7):1187-1192
Flower formation and growth of the short day plant Pharbitisnil, strain "Violet", were inhibited when the growth retardantAncymidol was applied prior to an inductive dark period viacotyledons or roots. Inhibition of flower formation by Ancymidolcould be completely reversed by an application of gibberellinA3 (GA3) to the plumule before the inductive dark period. Adose of 0.01 µg GA3/plant was almost sufficient to restoreflowering, but about a hundred times more GA3 was required torestore the internode length to that of control. Ancimidol greatlyreduced the endogenous gibberellin content. (Received July 18, 1980; )  相似文献   

19.
Suge  Hiroshi 《Plant & cell physiology》1980,21(8):1187-1192
Flower formation and growth of the short day plant Pharbitisnil, strain "Violet", were inhibited when the growth retardantAncymidol was applied prior to an inductive dark period viacotyledons or roots. Inhibition of flower formation by Ancymidolcould be completely reversed by an application of gibberellinA3 (GA3) to the plumule before the inductive dark period. Adose of 0.01 µg GA3/plant was almost sufficient to restoreflowering, but about a hundred times more GA3 was required torestore the internode length to that of control. Ancimidol greatlyreduced the endogenous gibberellin content. (Received July 18, 1980; )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号