首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variability of the heart rate (HRV) is widely studied as it contains information about the activity of the autonomic nervous system (ANS). However, HRV is influenced by breathing, independently of ANS activity. It is therefore important to include respiratory information in HRV analyses in order to correctly interpret the results. In this paper, we propose to record respiratory activity and use this information to separate the tachogram in two components: one which is related to breathing and one which contains all heart rate variations that are unrelated to respiration. Several algorithms to achieve this have been suggested in the literature, but no comparison between the methods has been performed yet. In this paper, we conduct two studies to evaluate the methods'' performances to accurately decompose the tachogram in two components and to assess the robustness of the algorithms. The results show that orthogonal subspace projection and an ARMAX model yield the best performances over the two comparison studies. In addition, a real-life example of stress classification is presented to demonstrate that this approach to separate respiratory information in HRV studies can reveal changes in the heart rate variations that are otherwise masked by differing respiratory patterns.  相似文献   

2.
 The goal of our study was to determine whether evidence for chaos in heart rate variability (HRV) can be observed when the respiratory input to the autonomic controller of heart rate is forced by the deterministic pattern associated with periodic breathing. We simultaneously recorded, in supine healthy volunteers, RR intervals and breathing volumes for 20 to 30 min (1024 data point series) during three protocols: rest (control), fixed breathing (15 breath/min) and voluntary periodic breathing (3 breaths with 2 s inspiration and 2 s expiration followed by an 8 s breath hold). On both the RR interval and breathing volume series we applied the non-linear prediction method (Sugihara and May algorithm) to the original time series and to distribution-conserved isospectral surrogate data. Our results showed that, in contrast to the control test, during both fixed and voluntary periodic breathing the variability of breathing volumes was clearly deterministic non-chaotic. During all the three protocols, the RR-interval series’ non-linear predictability was consistent with one of a chaotic series. However, at rest, no clear difference was observed between the RR-interval series and their surrogates, which means that no clear chaos was observed. During fixed breathing a difference appeared, and this difference seemed clearer during voluntary periodic breathing. We concluded that HRV dynamics were chaotic when respiration was forced with a deterministic non-chaotic pattern and that normal spontaneous respiratory influences might mask the normally chaotic pattern in HRV. Received: 7 August 1995 / Accepted in revised form: 20 March 1997  相似文献   

3.
A method to evaluate the direction and strength of causal interactions in bivariate cardiovascular and cardiorespiratory series is presented. The method is based on quantifying self and mixed predictability of the two series using nearest-neighbour local linear approximation. It returns two causal coupling indexes measuring the relative improvement in predictability along direct and reverse directions, and a directionality index indicating the preferential direction of interaction. The method was implemented through a cross-validation approach that allowed quantification of directionality without constraining the embedding of the series, and fully exploited the available data to maximise the prediction accuracy. Validation on short simulated bivariate time series demonstrated the ability of the method to capture different degrees of unidirectional and bidirectional interaction. Moreover, application to representative examples of heart rate, systolic arterial pressure and respiration series allowed the inference of causal relationships related to known physiological mechanisms and experimental conditions.  相似文献   

4.

Objectives

Due to the frequent use of coronary angiography the awareness of Takotsubo stress cardiomyopathy (TSC) has increased although the exact pathophysiology of TSC is still largely unknown. Our objective was to investigate the effects of mental stress on myocardial function, heart rate variability (HRV) and salivary cortisol (SC) in TSC patients.

Design

This study is a case-control study and a sub-study of the Stockholm Myocardial Infarction with Normal Coronaries (SMINC) study.

Setting

Mental stress test was performed more than 6 months after the acute event in TSC patients and age- and sex-matched controls. Standard echocardiography and tissue Doppler imaging (TDI) - derived time-phases of cardiac cycle were recorded to calculate myocardial performance index (MPI) to assess ventricular function before and during mental stress. Holter-ECG recording was made to estimate HRV before, during and after mental stress. SC was measured at baseline, before and 20 minutes after mental stress.

Subjects

Twenty-two TSC patients and 22 sex-and age-matched controls were recruited from the SMINC-study and investigated with a mental stress test. All TSC patients had a previous normal cardiovascular magnetic resonance investigation.

Results

There were no significant differences at rest or during mental stress for left and right ventricular MPI or other standard diastolic variables between TSC patients and controls. HRV did not differ between TSC patients and controls. There was a trend towards less increase in SC after mental stress in TSC patients compared to controls.

Conclusion

Mental stress did not induce a significant difference in myocardial function or HRV response between TSC and controls. Moreover, no significant difference could be seen in SC response at baseline, during or after mental stress. This study indicates that myocardial vulnerability to mental stress does not persist in TSC patients.  相似文献   

5.
The cerebral cortex has massive connections with autonomic nervous system and then arouses cardiovascular events, but the coupling mechanism between brain and heart is not clear. In this study the heart rate variability (HRV) and directed transfer function (DTF) methods are used to investigate the cortico-cortical functional coupling and direction of information flow between brain and heart during a mental arithmetic (MA) task. Electroencephalogram (EEG) and ECG were used for measuring neural/cardiac activity. Forty-three healthy male subjects were voluntarily participated in the study. Our results showed compared with control, LF/HF and LFn significantly increased while HF, HFn and total power significantly decreased (P < 0.05) during MA task. HR (79 ± 1.7 beats/min) was also significantly higher compared with the control (71 ± 1.4 beats/min). Moreover, MA task trigger the neurons of pre-central and central areas and then information transmit from front to back, and finished information integration at parietal and occipital locations. Our findings suggested that MA task caused an increase of the coupling of brain regions and quickened heart rate by virtue of increasing sympathetic activity and decreasing parasympathetic activity. The regulation from post-central areas to heart as well as feedback regulation from heart to central areas exists in the MA task.  相似文献   

6.
We measured cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF), and cerebral lactate output during rest, during the execution of mental arithmetic, and during mental stress induced by physical and psychological annoyance. Measurements were performed in healthy volunteers by use of the Kety-Schmidt technique with 133Xe as the inert gas. Electroencephalographic desynchronization and highly significant increases in plasma catecholamines and heart rate verified that the test measurements were performed during conditions differing distinctly from the resting state. In accordance with an earlier study (Sokoloff et al. J. Clin. Invest. 34: 1101-1108, 1985), a minimal and nonsignificant 1% reduction of global CMRO2 during mental arithmetic was observed, signifying that this form of mental activation was unassociated with any detectable increase in overall cerebral synaptic activity. Mental stress induced a slight but highly significant (P less than 0.002) 6% reduction in global CMRO2. This finding is in contrast to results from earlier investigations and contradicts the generally accepted notion of an association between mental arousal and a diffuse upregulation of cerebral synaptic activity. During mental arithmetic and mental stress, cerebral lactate output increased by 207 and 344%, respectively, but because of large individual variations in the measured responses, the elevations reached statistical significance only during mental arithmetic.  相似文献   

7.
Heindl S  Vahlkamp K  Weitz G  Fehm HL  Dodt C 《Steroids》2006,71(3):206-213
Aim of the present study was to investigate the influence of hydrocortisone on muscle sympathetic nerve activity (MSNA) and hemodynamic parameters during different sympathoexcitatory manoeuvres in humans. The study focuses on the interaction of the hypothalamo-pituitary-adrenal system and the sympathetic nervous system. Hydrocortisone 100 mg or placebo was administered intravenously to eight young healthy subjects in a double-blind crossover design. After 6 h, blood pressure, heart rate and MSNA from the peroneal nerve were recorded at rest, during an arithmetic stress task, an apnea and a cold pressor test. Hydrocortisone treatment increased serum cortisol levels to the upper physiological range and suppressed basal levels of adrenocorticotropin. During mental stress, MSNA, heart rate and blood pressure levels were elevated independently of hydrocortisone pre-treatment. However, hydrocortisone induced a sustained increase in basal heart rate throughout the whole experiment. A stronger increase in diastolic blood pressure was observed during apnea and cold pressor test in the hydrocortisone experiments. MSNA or plasma catecholamines at rest or during the manoeuvres were not affected by hydrocortisone. The observed hydrocortisone effects may be due to an increased responsiveness of adrenergic receptors towards catecholamines or a central modulation of the baroreflex involving parasympathetic mechanisms. Further studies are needed to confirm that the increase in MSNA during mental stress does not depend on a concomitant activation of the hypothalamo-pituitary-adrenal system.  相似文献   

8.
The effects of anxiety on the external respiration system and respiratory sinus arrhythmia (RSA) were studied in healthy subjects in real-life conditions. Changes in external respiration parameters and heart rate variability (HRV) in students going to take their end-of-term exams were assessed relative to a midterm period, and the cardiorespiratory system was monitored in a longitudinal study for 50 days. The function of the cardiorespiratory system was characterized by measuring external respiration parameters and calculating HRV parameters. State anxiety (SA) was assessed using Spielberger’s scale. An increase in SA before an exam was accompanied by a higher breathing rate, a higher tidal volume, and lower HRV indices, especially those related to respiratory sinus arrhythmia (HF and HF norm). The changes in the parameters depended on the increase in SA. A negative correlation was observed between midterm HF and pre-exam SA. The longitudinal study revealed a distinct negative correlation between respiratory sinus arrhythmia parameters and peak expiratory flow (PEF) and a positive correlation between SA and PEF in the majority of subjects. Changes in cardiorespiratory parameters depended on the changes in SA in the longitudinal study. An increase in SA was accompanied by substantial changes in respiratory sinus arrhythmia (RAS) and external respiration parameters, and their correlation was assumed to indicate that modification of parasympathetic activity plays a leading role in increasing PEF.  相似文献   

9.
Female students (N = 538) of the medical academy and the pedagogical college were psychophysiologically examined in different periods of the individual annual cycle (IAC), which lasts from one birthday to the next, with color, individual minute, and mental arithmetic tests. In addition, heart rhythm variation (HRV), anxiety, number of iris nerve rings, creativity, extroversion/introversion, and salivary cortisol were established, and integral stress reactivity (SR) and psychoemotional stress (PES) indices were calculated. It was found that the lowest anxiety, uneasiness, cortisol, diastolic arterial pressure during the mental arithmetic test, total deviation from the autogenous norm (Luscher's test), SR, and PES were observed in the first trimester (IAC months I–III). On the contrary, the fourth trimester (IAC months X–XII) was characterized by a decrease in extroversion and HRV and an increase in cortisol, anxiety, uneasiness, stress reactivity, and PES. Along with this, the fourth trimester differed from the other IAC periods in that students had the greatest total creativity score, which was considered as a compensatory phenomenon.  相似文献   

10.

Introduction

Theta-phase gamma-amplitude coupling (TGC) measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG) study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD) by comparing the power spectra and TGC at rest and during a mental arithmetic task.

Methods

Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD) from a camp for hyperactive children under two conditions (rest and task performance). The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA) continuous performance test (CPT) scores and EEG parameters were performed.

Results

No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p < 0.001). The TGC values positively correlated with the IVA CPT scores but negatively correlated with theta power.

Conclusions

Our findings suggest that desynchronization of TGC occurred during the arithmetic task in ADHD children. TGC in ADHD children is expected to serve as a promising neurophysiological marker of network deactivation during attention-demanding tasks.  相似文献   

11.
Heart rate variability (HRV) is a marker of autonomous activity in the heart. An important application of HRV measures is the stratification of mortality risk after myocardial infarction. Our hypothesis is that the information entropy of HRV, a non-linear approach, is a suitable measure for this assessment. As a first step, to evaluate the effect of myocardial infarction on the entropy, we compared the entropy to standard HRV parameters. The entropy was estimated by compressing the tachogram with Bzip2. For univariate comparison, statistical tests were used. Multivariate analysis was carried out using automatically generated decision trees. The classification rate and the simplicity of the decision trees were the two evaluation criteria. The findings support our hypothesis. The meanNN-normalized entropy is reduced in patients with myocardial infarction with very high significance. One entropy parameter alone exceeds the discrimination strength of multivariate standards-based trees.  相似文献   

12.
Heritability of blood pressure increases during mental stress.   总被引:1,自引:0,他引:1  
We studied the influence of mental stress on the contributions of genes and environment to individual variation in systolic (SBP) and diastolic (DBP) blood pressure by structural equation modelling in 320 adolescent male and female twins. Blood pressure data were collected during rest and during a reaction time and a mental arithmetic task. Univariate analyses of SBP and DBP showed familial aggregation for blood pressure. A genetic explanation for this resemblance was most likely, although during rest conditions a model that attributed familial resemblance to shared environmental factors, also fitted the data. There was no evidence for sex differences in heritabilities. Multivariate analyses showed significant heterogeneity between sexes for the intercorrelations of the blood pressure data measured under different rest and task conditions. Multivariate genetic analyses were therefore carried out separately in males and females. For SBP and DBP in females and for SBP in males an increase in heritabilities was seen for blood pressure measured during stress, as compared to rest measurements. The influence of shared environmental factors decreased during stress. For DBP in males no significant contributions of shared environment were found. The multivariate analyses indicated that the same genetic and environmental influences are expressed during rest and stress conditions.  相似文献   

13.
The objective of this study was to establish the separate associations between parasympathetic modulations of the heart [evaluated through heart rate (HR) variability (HRV) indexes and postexercise HR recovery (HRR) indexes] with cardiorespiratory fitness and training load. We have measured cardiorespiratory fitness through peak oxygen consumption (Vo2 max) and estimated weekly training load with the Baecke sport score in 55 middle-aged individuals (30.8 +/- 1.8 yr, body mass index 24.5 +/- 0.4 kg/m2). HRV indexes were analyzed at rest under controlled breathing, and HRR was estimated from HR curve fitting after maximal exercise or from measurements of the number of beats recovered at 60 s after exercise. Multiple linear regressions were used to investigate the separate relationships between vagal-related HRV indexes and Vo2 max and Baecke scores. On the basis of their Vo2 max and Baecke scores, subjects were classified as fit or unfit and as low trained (LT) or moderately trained (MT), which yielded four groups: UnfitLT, UnfitMT, FitLT, and FitMT. Vagal-related HRV indexes were positively correlated with Vo2 max (P < 0.05) but not with Baecke scores. In contrast, HRR indexes were related to Baecke scores (P < 0.05) but not with Vo2 max. FitLT and FitMT had significantly higher (P < 0.05) normalized vagal-related HRV indexes than UnfitLT and UnfitMT, but HRR did not change. Moderate training was associated with significantly lower HRR indexes both in UnfitMT and FitMT compared with UnfitLT and FitLT, but there was no difference in vagal-related HRV indexes. These results indicate that vagal-related HRV indexes are related more to cardiorespiratory fitness, whereas HRR appears to be better associated with training load.  相似文献   

14.
We performed time-varying spectral analyses of heart rate variability (HRV) and blood pressure variability (BPV) recorded from 16 normal humans during acoustically induced arousals from sleep. Time-varying autoregressive modeling was employed to estimate the time courses of high-frequency HRV power, low-frequency HRV power, the ratio between low-frequency and high-frequency HRV power, and low-frequency power of systolic BPV. To delineate the influence of respiration on HRV, we also computed respiratory airflow high-frequency power, the modified ratio of low-frequency to high-frequency HRV power, and the average transfer gain between respiration and heart rate. During cortical arousal, muscle sympathetic nerve activity and heart rate increased and returned rapidly to baseline, but systolic blood pressure, the ratio between low-frequency and high-frequency HRV power, low-frequency HRV power, the modified ratio of low-frequency to high-frequency HRV power, and low-frequency power of systolic BPV displayed increases that remained above baseline up to 40 s after arousal. High-frequency HRV power and airflow high-frequency power showed concommitant decreases to levels below baseline, whereas the average transfer gain between respiration and heart rate remained unchanged. These findings suggest that 1) arousal-induced changes in parasympathetic activity are strongly coupled to respiratory pattern and 2) the sympathoexcitatory cardiovascular effects of arousal are relatively long lasting and may accumulate if repetitive arousals occur in close succession.  相似文献   

15.
Acute mental stress elicits hemoconcentration and polycytosis. We investigated whether haematological response to repeated acute mental stress would habituate and be sustained 45 min and 105 min after stress. Twenty-four men underwent a 13-min stressor three times, one week apart; hematological variables were measured at week one and three. Hematocrit, hemoglobin, leukocytes, lymphocytes, erythrocytes, and thrombocytes all increased from rest to immediately post-stress (p's<.001). After 105 min of recovery, leukocytes and platelets both were higher, and hematocrit, hemoglobin, lymphocytes, and erythrocytes were all lower than at rest (p's<.001 to <.05). At all time points, hematocrit (p=.005) and erythrocytes (p=.006) were lower at week three than at week one. In contrast to an attenuation in systolic blood pressure increase from rest to immediately post-stress (p<.001), and in cortisol recovery from immediately post-stress to 45 min post-stress (p<.001), the magnitude of change in hemoconcentration and cell counts in stress and recovery experienced no habituation. Adjustment for stress-induced plasma volume shift altered findings: Elevated leukocytes post-stress persisted at 105 min (p<.001); any changes in lymphocytes became insignificant; erythrocytes decreased from rest to post-stress (p<.001) to increase again during recovery (p's<.05); platelets increased linearly between rest and 105 min of recovery (p=.005). We conclude that the magnitude of changes in hemoconcentration and blood cells during acute mental stress and recovery failed to habituate to stress repeats and, in part, sustained up to 105 min. Plasma volume shift accompanying stress affects the time course of stress polycytosis.  相似文献   

16.
Animal experiments suggest that an increase in sympathetic outflow can depress muscle spindle sensitivity and thus modulate the stretch reflex response. The results are, however, controversial, and human studies have failed to demonstrate a direct influence of the sympathetic nervous system on the sensitivity of muscle spindles. We studied the effect of increased sympathetic outflow on the short-latency stretch reflex in the soleus muscle evoked by tapping the Achilles tendon. Nine subjects performed three maneuvers causing a sustained activation of sympathetic outflow to the leg: 3 min of static handgrip exercise at 30% of maximal voluntary contraction, followed by 3 min of posthandgrip ischemia, and finally during a 3-min mental arithmetic task. Electromyography was measured from the soleus muscle with bipolar surface electrodes during the Achilles tendon tapping, and beat-to-beat changes in heart rate and mean arterial blood pressure were monitored continuously. Mean arterial pressure was significantly elevated during all three maneuvers, whereas heart rate was significantly elevated during static handgrip exercise and mental arithmetic but not during posthandgrip ischemia. The peak-to-peak amplitude of the short-latency stretch reflex was significantly increased during mental arithmetic (P < 0.05), static handgrip exercise (P < 0.001), and posthandgrip ischemia (P < 0.005). When expressed in percent change from rest, the mean peak-to-peak amplitude increased by 111 (SD 100)% during mental arithmetic, by 160 (SD 103)% during static handgrip exercise, and by 90 (SD 67)% during posthandgrip ischemia. The study clearly indicates a facilitation of the short-latency stretch reflex during increased sympathetic outflow. We note that the enhanced stretch reflex responses observed in relaxed muscles in the absence of skeletomotor activity support the idea that the sympathetic nervous system can exert a direct influence on the human muscle spindles.  相似文献   

17.
Astronauts usually work under much mental stress. However, it is unclear how and whether or not an exposure to microgravity affects physiological response to mental stress in humans. To examine effects of microgravity on vasomotor sympathetic and peripheral vasodilator responses to mental stress, we performed 10 min of mental arithmetic (MA) before and after 14 days of 6 degrees head-down bed rest (HDBR), a ground-based simulation of spaceflight. Total muscle sympathetic nerve activity (MSNA, measured by microneurography) slightly increased during MA before HDBR, and this increase was augmented after HDBR. Calf blood flow (measured by venous occlusion plethysmography) increased and calf vascular resistance (calculated by dividing mean blood pressure by calf blood flow) decreased during MA before HDBR, but these responses were abolished after HDBR. Increases in heart rate and mean blood pressure during MA were not different between before and after HDBR. These findings suggest that HDBR augmented vasomotor sympathoexcitation but attenuated vasodilatation in the calf muscle in response to mental stress.  相似文献   

18.
We utilized transfer function analysis of heart rate variability (HRV) and respiration to investigate the effect of water intake on gastric myoelectrical activity and its relationship to vagal activity. The electrogastrography (EGG) and HRV were recorded simultaneously before and after drinking 500 ml of water in 10 healthy subjects. We observed good linearity between lung volumes and HRV signals at a ventilatory rate between 0.2 and 0.4 Hz before and after water intake. The EGG power of 3 cycles/min increased remarkably after the water intake. We found that there was a significant increase in the magnitude of the respiration-HRV transfer function after water intake (P < 0.05). The EGG 3 cycles/min power was positively correlated with the transfer magnitude throughout the study (r = 0.54, P = 0.01). These results confirm that transfer function analysis of HRV sensitively identifies subtle changes in the respiratory sinus arrhythmia that occurs with water intake. The present findings suggest that transfer function analysis of HRV and respiration after water intake can be used to evaluate vagal nervous activity in the human gut.  相似文献   

19.
Power spectral analysis (PSA) provides a powerful tool for determining frequency oscillations in time signals, and it is accepted that mammals can show distinct components in the heart rate (fH) spectrum that are synchronous with ventilatory frequency (fV). Using similar signal processing techniques, these fundamental components at fV are not apparent in the spectrum calculated from fish fH. Here we compare conventional PSA on the R-R interval tachogram generated from ECG traces recorded in rats and fish, with PSA on the raw ECG waveform. The rat R-R tachogram showed a defined sigmoidal component, whereas the fish R-R tachogram was a more chaotic waveform. In agreement with the literature, PSA of these respective waveforms produced a component at the same frequency as ventilation in the rat, but of lower frequency than ventilation for the fish. Applying PSA to the rat ECG produced a spectrum with a fundamental component of similar frequency to that observed in the R-R tachogram spectrum, indicating that the latter adequately contained heart rate variability (HRV) oscillations. However, PSA of the ECG in fish contrasted with that from the R-R tachogram, with components observed in the latter spectrum being absent from the former. This suggests that the frequency components determined by PSA on the fish R-R tachogram were not true components, but were aliased (or folded-back) from higher up in the spectrum. Using established aliasing equations, recalculation of these peaks showed that their true frequency was similar to that of the ventilatory frequency for individual fish. The extent of cardio-respiratory interaction, resulting in fV < f(H/2) in rats but fV > f(H/2) in fish, is suggested to be the origin of the differences observed.  相似文献   

20.
The present study was designed to examine the effect of heart rate variability (HRV) biofeedback on the cardiorespiratory resting function during sleep in daily life. Forty-five healthy young adults were randomly assigned to one of three groups: HRV biofeedback, Autogenic Training (AT), and no-treatment control. Participants in the HRV biofeedback were instructed to use a handheld HRV biofeedback device before their habitual bedtime, those in the AT were asked to listen to an audiotaped instruction before bedtime, and those in the control were asked to engage in their habitual activity before bedtime. Pulse wave signal during sleep at their own residences was measured continuously with a wristwatch-type transdermal photoelectric sensor for three time points. Baseline data were collected on the first night of measurements, followed by two successive nights for HRV biofeedback, AT, or control. Cardiorespiratory resting function was assessed quantitatively as the amplitude of high-frequency (HF) component of pulse rate variability, a surrogate measure of respiratory sinus arrhythmia. HF component increased during sleep in the HRV biofeedback group, although it remained unchanged in the AT and control groups. These results suggest that HRV biofeedback before sleep may improve cardiorespiratory resting function during sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号