首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
cspA (for cell surface protein A) encodes a repeat-rich glycophosphatidylinositol (GPI)-anchored cell wall protein (CWP) in the pathogenic fungus Aspergillus fumigatus. The number of repeats in cspA varies among isolates, and this trait is used for typing closely related strains of A. fumigatus. We have previously shown that deletion of cspA is associated with rapid conidial germination and reduced adhesion of dormant conidia. Here we show that cspA can be extracted with hydrofluoric acid (HF) from the cell wall, suggesting that it is a GPI-anchored CWP. The cspA-encoded CWP is unmasked during conidial germination and is surface expressed during hyphal growth. Deletion of cspA results in weakening of the conidial cell wall, whereas its overexpression increases conidial resistance to cell wall-degrading enzymes and inhibits conidial germination. Double mutant analysis indicates that cspA functionally interacts with the cell wall protein-encoding genes ECM33 and GEL2. Deletion of cspA together with ECM33 or GEL2 results in strongly reduced conidial adhesion, increased disorganization of the conidial cell wall, and exposure of the underlying layers of chitin and β-glucan. This is correlated with increasing susceptibility of the ΔcspA, ΔECM33, and ΔcspA ΔECM33 mutants to conidial phagocytosis and killing by human macrophages and hyphal damage induced by neutrophils. However, these strains did not exhibit altered virulence in mice with infected lungs. Collectively, these results suggest a role for cspA in maintaining the strength and integrity of the cell wall.The saprophytic mold Aspergillus fumigatus is an emerging pathogen and the major causative agent of invasive aspergillosis, a life-threatening disease primarily affecting immunocompromised patients (12, 16, 38).Molecular analyses have revealed numerous virulence attributes that enable A. fumigatus to infect the human host, including the production of toxins, the ability to acquire nutrients and iron under limiting conditions, and the presence of protective mechanisms that degrade oxygen radicals released by the host immune cells (7).The fungal cell wall plays a crucial role in infection. In A. fumigatus, as in other pathogenic fungi, the cell wall protects the fungus and interacts directly with the host immune system. It is an elastic, dynamic, and highly regulated structure and is essential for growth, viability, and infection. The fungal cell wall is a unique structure and therefore a specific target for antifungal drugs. The cell wall of A. fumigatus is composed of a polysaccharide skeleton interlaced and coated with cell wall proteins (CWPs). The main building blocks of the polysaccharide skeleton are an interconnected network of glucan, chitin, and galactomannan polymers (26). The major class of fungal CWPs is the glycophosphatidylinositol (GPI)-modified proteins (8,11, 14).We recently identified and characterized A. fumigatus CWPs containing tandem repeats (27). Repeats are hot spots of genetic change: because of replication slippage and recombination, repeats can undergo rapid changes in copy number, leading to natural variability among different isolates and allowing faster adaptation to new environments (23). In Saccharomyces cerevisiae, for example, an increase in the number of coding repeats in the FLO1 adhesin-encoding gene correlates with an increase in adhesion to the plastics used in medical devices (44,46). Similarly, repeat variation in the Candida albicans ALS3 adhesin changes its cellular binding specificity (34). Moreover, clinical C. albicans isolates show variability in the number of repeats in various cell surface genes, suggesting that this recombination process could play a role during infection, allowing cells to adapt rapidly to a fluctuating environment and/or evade the host immune system (34, 49, 50).We identified four genes encoding putative A. fumigatus GPI-anchored CWPs (AFUA_3G08990 [termed cspA for cell-surface protein A [4], AFUA_2G05150 [MP-2], AFUA_4G09600, and AFUA_6G14090) containing variable numbers of repeats among patient isolates (27). In A. fumigatus WT strain AF 293, cspA encodes a 433-amino-acid-long protein containing a putative leader sequence and GPI modification site. cspA lacks recognizable catalytic domains, and homologous genes are found only in species of Aspergillus. Most interesting is that the gene encodes a 188-amino-acid-long serine-threonine-proline-rich N-terminal region followed by a large size-variable six-amino-acid serine-proline [P-G-Q-P-S-(A/V)]-rich tandem repeat region showing significant homology to the repeat domains found in mammalian type XXI collagen. The number of repeats varies between 18 and 47 (24 to 65% of the length of the protein) in different isolates of A. fumigatus. The strains used in this study, AF 293 and CBS 144.89, contain 32 and 28 repeats, respectively.Deletion of cspA resulted in a phenotype characterized by rapid conidial germination and reduced adhesion to extracellular matrix (ECM), which suggests that cspA participates in defining cell surface properties. Highlighting the importance of this gene, Balajee et al. (4) showed that variations in the cspA nucleotide repeat sequence can be used to type closely related pathogenic isolates of A. fumigatus and identify outbreak clusters occurring in hospitals (3, 4).In this work, we undertook a detailed study of cspA. We analyzed the expression pattern of the protein encoded by cspA and its attachment to the cell wall. We prepared and analyzed A. fumigatus mutant strains in which cspA was overexpressed or deleted in combination with additional cell wall-associated genes. Results indicate that the protein encoded by cspA is GPI anchored to the cell wall and is unmasked during conidial germination. cspA deletion weakens the cell wall and results in rapid conidial germination, whereas cspA overexpression increases conidial resistance to protoplasting and inhibits conidial germination. cspA functionally interacts with the genes ECM33 and GEL2, which encode cell wall-associated proteins, resulting primarily in profound defects in conidial cell wall organization. The cspA ECM33 double mutant exhibited greater susceptibility to killing by human macrophages and hyphal damage induced by neutrophils. The implications of our findings are discussed.  相似文献   

4.
5.
We investigated the deposition of glucomannans (GMs) in differentiating earlywood tracheids of Cryptomeria japonica using immunocytochemical methods. GMs began to deposit at the corner of the cell wall at the early stages of S1 formation and showed uneven distribution in the cell wall during S1 formation. At the early stages of S2 formation, limited GM labeling was observed in the S2 layer, and then the labeling increased gradually. In mature tracheids, the boundary between the S1 and S2 layers and the innermost part of the cell wall showed stronger labeling than other parts of the cell wall. Deacetylation of GMs with mild alkali treatment led to a significant increase in GM labeling and a more uniform distribution of GMs in the cell wall than that observed before deacetylation, indicating that some GM epitopes may be masked by acetylation. However, the changes in GM labeling after deacetylation were not very pronounced until early stages of S2 formation, indicating that GMs deposited in the cell wall at early stages of cell-wall formation may contain fewer acetyl groups than those deposited at later stages. Additionally, the density of GM labeling increased in the cell wall in both specimens before and after GM deacetylation, even after cell-wall formation was complete. This finding suggests that some acetyl groups may be removed from GMs after cell-wall formation is complete as part one of the tracheid cell aging processes.  相似文献   

6.
Selecting entomopathogenic fungal isolates for use as biocontrol agents requires an assessment of their growth and virulence characteristics as affected by environmental conditions. Here we demonstrate a wide temperature and moisture range for colony growth, effective conidial germination and virulence against Pissodes strobi Peck (white pine weevil) of several isolates of Lecanicillium Gams and Zare, an entomopathogenic fungus distributed worldwide and indigenous to forests on Vancouver Island, British Columbia, Canada. In order to examine the potential Lecanicillium as a biological control agent, the pathogenicity of isolates collected from different geographical locations on P. strobi cadavers was assessed, and colony growth at different temperatures was evaluated. Colony growth was evident between 5 and 30°C, with optimal growth occurring at 25°C. Various combinations of water activity (0.55, 0.76, 0.85 and 0.99 a w) and temperature (10, 15, 20, and 25°C) were also used to evaluate environmental impacts on conidial germination and cumulative mycosis of adult P. strobi. Certain Lecanicillium isolates displayed xerophilic (0.85 a w) or psychrophilic (10°C) growth optima. Ultimately, identifying the abiotic limits of this entomopathogenic fungus will be used to determine which isolates have potential for future in situ biocontrol trials.  相似文献   

7.
SYNOPSIS The surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi was evaluated by means of binding of cationized ferritin to the cell surface as visualized by electron microscopy, and by direct measurements of the cellular microelectrophoretic mobility (EPM). Epimastigote forms had a mean EPM of -0.52 μm.s-1.V-1.cm and were lightly labeled with cationized ferritin. In contrast, bloodstream trypomastigotes had a much higher EPM (-1.14), and the surface was heavily labeled with cationized ferritin. When trypomastigotes from stationary phase cultures were isolated on DEAE cellulose columns, the mean EPM was found to be significantly lower (-0.63), and labeling with cationized ferritin decreased. With a mixed population containing epimastigote, trypomastigote, and intermediate forms, EPM values ranging between -0.70 to -1.14 were found. From these observations we conclude that there is a definite increase in negative surface charge during development from epi- to trypomastigote forms of T. cruzi.  相似文献   

8.
9.
Conidial germination and the formation of appressoria are important events in the interactions between entomopathogenic fungi and their arthropod hosts. In this study, we demonstrate the effects of lipids extracted from tick epicuticle and the surface of a mammalian host (calf) on conidial germination and the development of appressoria in two subspecies of Metarhizium anisopliae, M. anisopliae var. anisopliae (M.an.an.-7) and M. anisopliae var. acridum (M.an.ac.-5), which have different levels of virulence toward ticks. Pentane extracts of epicuticles of ticks susceptible and resistant to fungal infection always stimulated the germination of M.an.an.-7 conidia and the development of their appressoria; whereas the effects of dichloromethane (DCM) extracts of tick epicuticle varied depending on the tick. The DCM extracts from most of the tick species and developmental stages stimulated conidial germination and/or the formation of appressoria in M.an.an.-7. However, a DCM extract of lipids from the most resistant tick, engorged Hyalomma excavatum female, inhibited the germination of M.an.an.-7 conidia. Conidia of the non-virulent M.an.ac.-5 did not germinate on agarose amended with any of the examined tick extracts. However, when the tick extracts were placed on bactoagar, conidial germination increased 7- to 8-fold. Extracts from the skin, hair and ear secretions of a calf stimulated conidial germination and the formation of appressoria in M.an.an.-7, but not M.an.ac.-5. This study demonstrates that lipids from tick epicuticles and mammalian skin selectively affect the germination of conidia of entomopathogenic fungi. The effects of these lipids may explain the variability in tick control these fungi provide for different hosts.  相似文献   

10.
Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model.Both mAbs bound to fungal cell surface and to the β1,3-β1,6 glucan of the fungal cell wall skeleton, as shown by immunofluorescence, electron-microscopy and ELISA. They were also equally unable to opsonize fungal cells in a J774 macrophage phagocytosis and killing assay. However, only the IgG2b conferred substantial protection against mucosal and systemic candidiasis in passive vaccination experiments in rodents. Competition ELISA and microarray analyses using sequence-defined glucan oligosaccharides showed that the protective IgG2b selectively bound to β1,3-linked (laminarin-like) glucose sequences whereas the non-protective IgM bound to β1,6- and β1,4-linked glucose sequences in addition to β1,3-linked ones. Only the protective IgG2b recognized heterogeneous, polydisperse high molecular weight cell wall and secretory components of the fungus, two of which were identified as the GPI-anchored cell wall proteins Als3 and Hyr1. In addition, only the IgG2b inhibited in vitro two critical virulence attributes of the fungus, hyphal growth and adherence to human epithelial cells.Our study demonstrates that the isotype of anti-β-glucan antibodies may affect details of the β-glucan epitopes recognized, and this may be associated with a differing ability to inhibit virulence attributes of the fungus and confer protection in vivo. Our data also suggest that the anti-virulence properties of the IgG2b mAb may be linked to its capacity to recognize β-glucan epitope(s) on some cell wall components that exert critical functions in fungal cell wall structure and adherence to host cells.  相似文献   

11.
12.
13.
LqhIT2 is an insect-specific neurotoxin from the venom of scorpion. In this study, the LqhIT2 gene was introduced into the entomopathogenic fungus, Metarhizium acridum. The virulence of the genetically modified strain MaLqhIT2 was then evaluated against locusts (Locusta migratoria manilensis). Compared with the wild-type strain, the median lethal cell density (LC50) for MaLqhIT2 was a 22.6-fold lower, and the median times to death (LT50) for MaLqhIT2 were reduced by 30.3 and 29.6 %, respectively, after topical inoculation and injection. MaLqhIT2 also grew significantly faster in the hemolymph than wild-type strain. There were no significant differences in germination, appressorium formation and sporulation in locust carcasses between the MaLqhIT2 and wild-type strain. These results indicate that LqhIT2 increased the virulence of M. acridum towards locusts by shortening the in vivo infection period, without affecting cuticle penetration or conidia formation in the carcasses. LqhIT2 thus shows considerable potential for increasing fungal virulence against locusts.  相似文献   

14.
We investigated the spatial and temporal distribution of xylans in the cell walls of differentiating earlywood tracheids of Cryptomeria japonica using two different types of monoclonal antibodies (LM10 and LM11) combined with immunomicroscopy. Xylans were first deposited in the corner of the S1 layer in the early stages of S1 formation in tracheids. Cell corner middle lamella also showed strong xylan labeling from the early stage of cell wall formation. During secondary cell wall formation, the innermost layer and the boundary between the S1 and S2 layers (S1/S2 region) showed weaker labeling than other parts of the cell wall. However, mature tracheids had an almost uniform distribution of xylans throughout the entire cell wall. Xylan localization labeled with LM10 antibody was stronger in the outer S2 layer than in the inner layer, whereas xylans labeled with LM11 antibody were almost uniformly distributed in the S2 layer. In addition, the LM10 antibody showed almost no xylan labeling in the S1/S2 region, whereas the LM11 antibody revealed strong xylan labeling in the S1/S2 region. These findings suggest that structurally different types of xylans may be deposited in the tracheid cell wall depending on the developmental stage of, or location in, the cell wall. Our study also indicates that deposition of xylans in the early stages of tracheid cell wall formation may be spatially consistent with the early stage of lignin deposition in the tracheid cell wall.  相似文献   

15.
16.
Reactive oxygen species (ROS) produced by NADPH oxidases can serve as signaling molecules to regulate a variety of physiological processes in multi-cellular organisms. In the nematophagous fungus Arthrobotrys oligospora, we found that ROS were produced during conidial germination, hyphal extension, and trap formation in the presence of nematodes. Generation of an AoNoxA knockout strain demonstrated the crucial role of NADPH oxidase in the production of ROS in A. oligospora, with trap formation impaired in the AoNoxA mutant, even in the presence of the nematode host. In addition, the expression of virulence factor serine protease P186 was up-regulated in the wild-type strain, but not in the mutant strain, in the presence of Caenorhabditis elegans. These results indicate that ROS derived from AoNoxA are essential for full virulence of A. oligospora in nematodes.  相似文献   

17.
Herbivore-induced plant volatiles (HIPVs) are clues that help predatory insects search for food. The hypothesis that entomopathogenic fungi, which protect plants, benefit from the release of HIPVs was tested. The plant Arabidopsis thaliana was used as the source of HIPVs. The insect herbivore Lipaphis erysimi (Kaltenbach) was used as the inducer, and the fungal pathogen of the aphid Lecanicillium lecanii was exposed to HIPVs to test our hypothesis. When exposed to aphid-induced A. thaliana volatiles, the mortality of aphids pre-treated with a conidial suspension of L. lecanii, the conidial germination and the appressorial formation were significantly increased compared with the control. The decan-3-ol and 4-methylpentyl isothiocyanate that were detected in the headspace seemed to have positive and negative affection, respectively. Moreover, HIPVs generated from groups of eight aphids per plant promoted significantly increased conidial germination and appressorial formation compared with HIPVs from groups of one, two and four aphids per plant. Our results demonstrated that the pathogenicity of the entomopathogenic fungus L. lecanii was enhanced when exposed to HIPVs and that the HIPVs were affected by the number of insect herbivores that induced them.  相似文献   

18.
《Journal of Asia》2020,23(2):585-590
The purpose of this study was to select the most effective Metarhizium anisopliae isolates for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults. The selection was performed using 65 isolates of M. anisopliae, an entomopathogenic fungus isolated from Korean soils. The selection process was carried out through evaluations of conidial thermotolerance, UV-B tolerance, pathogenicity and virulence against adults of two mosquito species and conidial production on grain medium. The thermotolerance of 65 M. anisopliae isolates ranged from 0% to 99%, and their UV-B tolerance ranged from 7.1% to 94.8%. Among them, 30 isolates with high thermotolerance were selected for evaluation of their pathogenicity and virulence against adults of the two mosquito species. Metarhizium anisopliae isolates were more susceptible to Cx. pipiens adults than Ae. albopictus adults because 11 isolates were pathogenic to Ae. albopictus and 21 isolates were pathogenic to Cx. pipiens. Virulence and conidial production were evaluated using 6 isolates with similar pathogenicity against the two species of mosquito. As a result, the accumulated mortality was 74–100% for Ae. albopictus and 78–100% for Cx. pipiens. LT50 values ranged from 2.3 to 5.2 days for Ae. albopictus and from 3.2 − 4.7 days for Cx. pipiens. Comparison of conidial production using three kinds of grain media showed various results according to isolate and medium. Based on the above results, M. anisopliae CN6S1W1 was finally selected as the most effective fungal isolate for the simultaneous control of Ae. albopictus and Cx. pipiens mosquito adults.  相似文献   

19.
The multifunctional regulator VelB physically interacts with other velvet regulators and the resulting complexes govern development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Here, we further characterize VelB’s role in governing asexual development and conidiogenesis in A. nidulans. In asexual spore formation, velB deletion strains show reduced number of conidia, and decreased and delayed mRNA accumulation of the key asexual regulatory genes brlA, abaA, and vosA. Overexpression of velB induces a two-fold increase of asexual spore production compared to wild type. Furthermore, the velB deletion mutant exhibits increased conidial germination rates in the presence of glucose, and rapid germination of conidia in the absence of external carbon sources. In vivo immuno-pull-down analyses reveal that VelB primarily interacts with VosA in both asexual and sexual spores, and VelB and VosA play an inter-dependent role in spore viability, focal trehalose biogenesis and control of conidial germination. Genetic and in vitro studies reveal that AbaA positively regulates velB and vosA mRNA expression during sporogenesis, and directly binds to the promoters of velB and vosA. In summary, VelB acts as a positive regulator of asexual development and regulates spore maturation, focal trehalose biogenesis and germination by interacting with VosA in A. nidulans.  相似文献   

20.
Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at least in part, from an important role in control of asexual spore (conidia) germination. Loss of GNA-3 leads to a drastic reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in germination similar to that in the Δgna-1, Δgna-3 double mutant, suggesting that RIC8 regulates conidial germination through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that expression of a GTPase-deficient, constitutively active gna-3 allele in the Δric8 mutant leads to a significant increase in conidial germination. Localization of the three Gα proteins during conidial germination was probed through analysis of cells expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Gα subunits were constructed through insertion of TagRFP in a conserved loop region of the Gα subunits. The results demonstrated that GNA-1 localizes to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during hyphal outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号