首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roux-en-Y gastric bypass (RYGB) is one of the most successful treatments for severe obesity and associated comorbidities. One potential adverse outcome, however, is increased risk for alcohol use. As such, we tested whether RYGB alters motivation to self-administer alcohol in outbred dietary obese rats, and investigated the involvement of the ghrelin system as a potential underlying mechanism. High fat (60%kcal from fat) diet-induced obese, non-diabetic male Sprague Dawley rats underwent RYGB (n = 9) or sham operation (Sham, n = 9) and were tested 4 months after surgery on a progressive ratio-10 (PR10) schedule of reinforcement operant task for 2, 4, and 8% ethanol. In addition, the effects of the ghrelin-1a-receptor antagonist D-[Lys3]-GHRP-6 (50, 100 nmol/kg, IP) were tested on PR10 responding for 4% ethanol. Compared to Sham, RYGB rats made significantly more active spout responses to earn reward, more consummatory licks on the ethanol spout, and achieved higher breakpoints. Pretreatment with a single peripheral injection of D-[Lys3]-GHRP-6 at either dose was ineffective in altering appetitive or consummatory responses to 4% ethanol in the Sham group. In contrast, RYGB rats demonstrated reduced operant performance to earn alcohol reward on the test day and reduced consummatory responses for two subsequent days following the drug. Sensitivity to threshold doses of D-[LYS3]-GHRP-6 suggests that an augmented ghrelin system may contribute to increased alcohol reward in RYGB. Further research is warranted to confirm applicability of these findings to humans and to explore ghrelin-receptor targets for treatment of alcohol-related disorders in RYGB patients.  相似文献   

2.
Roux-en-Y gastric bypass surgery (RYGB) is an effective treatment for severe obesity. Clinical studies however have reported susceptibility to increased alcohol use after RYGB, and preclinical studies have shown increased alcohol intake in obese rats after RYGB. This could reflect a direct enhancement of alcohol’s rewarding effects in the brain or an indirect effect due to increased alcohol absorption after RGYB. To rule out the contribution that changes in alcohol absorption have on its rewarding effects, here we assessed the effects of RYGB on intravenously (IV) administered ethanol (1%). For this purpose, high fat (60% kcal from fat) diet-induced obese male Sprague Dawley rats were tested ∼2 months after RYGB or sham surgery (SHAM) using both fixed and progressive ratio schedules of reinforcement to evaluate if RGYB modified the reinforcing effects of IV ethanol. Compared to SHAM, RYGB rats made significantly more active spout responses to earn IV ethanol during the fixed ratio schedule, and achieved higher breakpoints during the progressive ratio schedule. Although additional studies are needed, our results provide preliminary evidence that RYGB increases the rewarding effects of alcohol independent of its effects on alcohol absorption.  相似文献   

3.
4.
MethodsTo investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet.ResultsRYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance.  相似文献   

5.

Objective

The mechanisms determining long-term weight maintenance after Roux-en-Y gastric bypass (RYGB) remain unclear. Cross sectional studies have suggested that enhanced energy expenditure (EE) may play a significant role and the aim of this study was to reveal the impact of RYGB on each major component constituting total EE.

Design

Six obese female subjects, without other co-morbidities, were assessed before and at 10 days, 3 and 20 months after RYGB. Indirect calorimetry in a metabolic chamber was used to assess 24h EE at each study visit. Other measurements included body composition by DEXA, gut hormone profiles and physical activity (PA) using high sensitivity accelerometers.

Results

Median Body Mass Index decreased from 41.1 (range 39.1-44.8) at baseline to 28 kg/m2 (range 22.3-30.3) after 20 months (p<0.05). Lean tissue decreased from 55.9 (range 47.5-59.3) to 49.5 (range 41.1-54.9) kg and adipose tissue from 61 (range 56-64.6) to 27 (range 12-34.3) kg (both p<0.05). PA over 24h did not change after surgery whereas 24h EE and basal metabolic rate (BMR) decreased. EE after a standard meal increased after surgery when adjusted for total tissue (p<0.05). After an initial drop, RQ (respiratory quotient) had increased at 20 months, both as measured during 24h and after food intake (p<0.05).

Conclusion

RYGB surgery up-regulates RQ and EE after food intake resulting in an increased contribution to total EE over 24h when corrected for total tissue.  相似文献   

6.
Abstract: A subtractive hybridization and differential screening procedure was used to detect up-regulation of cytochrome c oxidase (CO) subunits I, III, and IV mRNA in the nucleus accumbens (NAc) of rats chronically treated with cocaine. Northern blot analyses of mRNA isolated from individual rats confirmed that CO subunit I was up-regulated by chronic, but not acute, cocaine in two brain regions, the NAc (33%) and caudate-putamen (CP)(35%). CO activity, used as a measure of metabolic activity, was increased by 88% in the NAc, and decreased by 20% in the medial prefrontal cortex (mPFC), the day after chronic treatment was terminated. CO enzyme activity was not regulated in the CP, or in other brain regions not involved in drug reward. CO activity in both the NAc and mPFC showed unique time-dependent patterns of regulation during the week after chronic cocaine treatment.  相似文献   

7.
Existing mouse models of Roux-en-Y gastric bypass (RYGB) surgery are not comparable to human RYGB in gastric pouch volume for a large or absent gastric volume. The aim of this study was to develop and characterize a mouse RYGB model that closely replicates gastric pouch size of human RYGB surgery of about 5% of total gastric volume. We established this model in diet-induced obese (DIO) mice of C57BL/6J. This surgery resulted in a sustained 30% weight loss, entirely accounted for by decreased fat mass but not lean mass, compared to sham-operated mice on the high fat diet. Compared to sham-operated mice, energy expenditure corrected for total body weight was significantly increased by about 25%, and substrate utilization was shifted toward higher carbohydrate utilization at 8 weeks after RYGB when body weight had stabilized at the lower level. The energy expenditure persisted and carbohydrate utilization was even more pronounced when the mice were fed chow diet. Although significantly increased during daytime, overall locomotor activity was not significantly different. In response to cold exposure, RYGB mice exhibited an improved capacity to maintain the body temperature. In insulin tolerance test, exogenous insulin-induced suppression of plasma glucose levels was significantly greater in RYGB mice at 4 weeks after surgery. Paradoxically, food intake measured at 5 weeks after surgery was significantly increased, possibly in compensation for increased fecal energy loss and energy expenditure. In conclusion, this new model is a viable alternative to existing murine RYGB models and the model matches human RYGB surgery in anatomy. This model will be useful for studying molecular mechanisms involved in the beneficial effects of RYGB on body weight and glucose homeostasis.  相似文献   

8.

Background

Pathological gambling (PG) and obsessive-compulsive disorder (OCD) are conceptualized as a behavioral addiction, with a dependency on repetitive gambling behavior and rewarding effects following compulsive behavior, respectively. However, no neuroimaging studies to date have examined reward circuitry during the anticipation phase of reward in PG compared with in OCD while considering repetitive gambling and compulsion as addictive behaviors.

Methods/Principal Findings

To elucidate the neural activities specific to the anticipation phase of reward, we performed event-related functional magnetic resonance imaging (fMRI) in young adults with PG and compared them with those in patients with OCD and healthy controls. Fifteen male patients with PG, 13 patients with OCD, and 15 healthy controls, group-matched for age, gender, and IQ, participated in a monetary incentive delay task during fMRI scanning. Neural activation in the ventromedial caudate nucleus during anticipation of both gain and loss decreased in patients with PG compared with that in patients with OCD and healthy controls. Additionally, reduced activation in the anterior insula during anticipation of loss was observed in patients with PG compared with that in patients with OCD which was intermediate between that in OCD and healthy controls (healthy controls < PG < OCD), and a significant positive correlation between activity in the anterior insula and South Oaks Gambling Screen score was found in patients with PG.

Conclusions

Decreased neural activity in the ventromedial caudate nucleus during anticipation may be a specific neurobiological feature for the pathophysiology of PG, distinguishing it from OCD and healthy controls. Correlation of anterior insular activity during loss anticipation with PG symptoms suggests that patients with PG fit the features of OCD associated with harm avoidance as PG symptoms deteriorate. Our findings have identified functional disparities and similarities between patients with PG and OCD related to the neural responses associated with reward anticipation.  相似文献   

9.
Food intake and body weight are regulated by a complex system of neural and hormonal signals, of which the anorexigenic neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) is central. In this study, rat models of obesity and weight loss intervention were compared with regard to several 5-HT markers. Using receptor autoradiography, brain regional-densities of the serotonin transporter (SERT) and the 5-HT(2A) and 5-HT(4) receptors were measured in (i) selectively bred polygenic diet-induced obese (pgDIO) rats, (ii) outbred DIO rats, and (iii) Roux-en-Y gastric bypass (RYGB)-operated rats. pgDIO rats had higher 5-HT(4) and 5-HT(2A) receptor binding and lower SERT binding when compared to polygenic diet-resistant (pgDR) rats. The most pronounced difference between pgDIO and pgDR rats was observed in the nucleus accumbens shell (NAcS), a brain region regulating reward aspects of feeding. No differences were found in the 5-HT markers between DIO rats, chow-fed control rats, and DIO rats experiencing a weight loss. The 5-HT markers were also similar in RYGB and sham-operated rats except for a downregulation of 5-HT(2A) receptors in the NAcS. The higher receptor and lower SERT binding in pgDIO as compared to pgDR rats corresponds to what is reported in overweight humans and suggests that the dysfunctions of the 5-HT system associated with overeating or propensity to become overweight are polygenically determined. Our results support that the obesity-prone rat model has high translational value and suggests that susceptibility to develop obesity is associated with changed 5-HT tone in the brain that may also regulate hedonic aspects of feeding.  相似文献   

10.
In addition to classic functions of facilitating hepatobiliary secretion and intestinal absorption of lipophilic nutrients, bile acids (BA) are also endocrine factors and regulate glucose and lipid metabolism. Recent data indicate that antiobesity bariatric procedures e.g. Roux-en-Y gastric bypass surgery (RYGB), which also remit diabetes, increase plasma BAs in humans, leading to the hypothesis that BAs may play a role in diabetes resolution following surgery. To investigate the effect of RYGB on BA physiology and its relationship with glucose homeostasis, we undertook RYGB and SHAM surgery in Zucker diabetic fatty (ZDF) and normoglycemic Sprague Dawley (SD) rats and measured plasma and fecal BA levels, as well as plasma glucose, insulin, Glucagon like peptide 1 (GLP-1) and Peptide YY (PYY), 2 days before and 3, 7, 14 and 28 days after surgery. RYGB decreased body weight and increased plasma GLP-1 in both SD and ZDF rats while decreasing plasma insulin and glucose in ZDF rats starting from the first week. Compared to SHAM groups, both SD-RYGB and ZDF-RYGB groups started to have increases in plasma total BAs in the second week, which might not contribute to early post-surgery metabolic changes. While there was no significant difference in fecal BA excretion between SD-RYGB and SD-SHAM groups, the ZDF-RYGB group had a transient 4.2-fold increase (P<0.001) in 24-hour fecal BA excretion on post-operative day 3 compared to ZDF-SHAM, which paralleled a significant increase in plasma PYY. Ratios of plasma and fecal cholic acid/chenodeoxycholic acid derived BAs were decreased in RYGB groups. In addition, tissue mRNA expression analysis suggested early intestinal BA reabsorption and potentially reduced hepatic cholic acid production in RYGB groups. In summary, we present novel data on RYGB-mediated changes in BA metabolism to further understand the role of BAs in RYGB-induced metabolic effects in humans.  相似文献   

11.
12.
We studied levels of tyrosine hydroxylase immunoreactivity and phosphorylation state in the ventral tegmental area (VTA) and nucleus accumbens (NAc) in an effort to understand better the mechanisms by which these brain reward regions are influenced by opiates and cocaine. In the VTA, chronic, but not acute, administration of either morphine or cocaine increased levels of tyrosine hydroxylase immunoreactivity by 30-40%, with no change observed in the relative phosphorylation state of the enzyme. In the NAc, chronic, but not acute, morphine and cocaine treatments decreased the phosphorylation state of tyrosine hydroxylase, without a change in its total amount. In contrast, morphine and cocaine did not regulate tyrosine hydroxylase in the substantia nigra or caudate/putamen, brain regions generally not implicated in drug reward. Morphine and cocaine regulation of tyrosine hydroxylase could represent part of a common biochemical basis of morphine and cocaine addiction and craving.  相似文献   

13.
Roux-en-Y gastric bypass (RYGB) is an effective method to attain sustained weight loss and diabetes remission. We aimed to elucidate early changes in the plasma metabolome and lipidome after RYGB. Plasma samples from 16 insulin-resistant morbidly obese subjects, of whom 14 had diabetes, were subjected to global metabolomics and lipidomics analysis at pre-surgery and 4 and 42 days after RYGB. Metabolites and lipid species were compared between time points and between subjects who were in remission and not in remission from diabetes 2 years after surgery. We found that the variables that were most discriminatory between time points were decanoic acid and octanoic acid, which were elevated 42 days after surgery, and sphingomyelins (18:1/21:0 and 18:1/23:3), which were at their lowest level 42 days after surgery. Insulin levels were lower at 4 and 42 days after surgery compared with pre-surgery levels. At 4 days after surgery, insulin levels correlated positively with metabolites of branched chain and aromatic amino acid metabolism and negatively with triglycerides with long-chain fatty acids. Of the 14 subjects with diabetes prior to surgery, 7 were in remission 2 years after surgery. The subjects in remission displayed higher pre-surgery levels of tricarboxylic acid cycle intermediates and triglycerides with long-chain fatty acids compared with subjects not in remission. Thus, metabolic alterations are induced soon after surgery and subjects with diabetes remission differ in the metabolic profiles at pre- and early post-surgery time points compared to patients not in remission.  相似文献   

14.

Objective

Obesity is associated with low-grade chronic inflammation. We hypothesized that Roux-en-Y gastric bypass (RYGB) surgery would reduce activation of the NLRP3 inflammasome in metabolically active adipose tissue (AT) of obese rats, and this change would be related to decreases in body weight and improved glycemic control.

Methods

Omental, mesenteric and subcutaneous fat depots were collected from Sprague-Dawley rats: Sham control and RYGB; 90-days after surgery. NLRP3, caspase–1, apoptosis-associated speck-like protein (ASC), IL–1β, IL–18, IL–6 and MCP–1 gene and protein expression were quantified. Glucose metabolism was assessed by oral glucose tolerance test (OGTT).

Results

Compared to Sham surgery controls, RYGB surgery decreased IL–6, MCP–1, NLRP3, IL–18, caspase–1 and ASC in omental fat, and decreased IL–6, MCP1, IL–1β, IL–18, caspase–1 and ASC gene expression in mesenteric fat. We observed differential gene expression between visceral and subcutaneous fat for IL–6 and IL–1β, both being downregulated by RYGB in visceral, and upregulated in subcutaneous depots. These changes in gene expression were accompanied by a decrease in NLRP3, ASC, IL–18, caspase–1 and IL–1β protein expression in omental tissue. We found a positive correlation between caspase–1, ASC, MCP–1, IL–18 and IL–6 gene expression following surgery and glucose AUC response in omental fat, while the change in glucose AUC response correlated with caspase–1 gene expression in subcutaneous fat.

Conclusion

This study demonstrates that bariatric surgery reverses inflammation in visceral adipose tissue by suppressing NLRP3 inflammasome activation. These are the first data to implicate the NLRP3 inflammasome in diabetes remission after RYGB surgery.  相似文献   

15.
Abstract: The distribution of enolase (EC 4.2.1.11) activity and isoenzymes in various regions of human brain at different ages (from 23 weeks of gestation to 95 years) and in brain tumors has been determined. Total enolase activity increased in all regions with age. No significant differences were found in the relative proportions of αα-, αγ-, and γγ-enolase isoenzymes in the various brain regions, determined by agarose gel electrophoresis. Type αα-enolase was the predominant isoenzyme, and αγ-enolase represented a substantial proportion of the total enolase activity. Astrocytomas, anaplastic astrocytomas, glioblastomas, and meningiomas possessed lower enolase activity than normal brain. Among astrocytic tumors, total enolase activity correlated with malignancy. Astrocytomas possessed the lowest and glioblastomas the highest enolase activity. All tumors possessed a higher proportion of αα-enolase and a lower proportion of γγ-enolase than the normal human brain. Among astrocytic tumors, glioblastomas were the tumors with the highest proportion of αα-enolase and lowest proportion of γγ-enolase.  相似文献   

16.
The taste and smell experience of other human beings cannot be known directly. Thus our understanding of age-related changes in the perception of taste and smell is derived inferentially. Inferences based on verbal reports and on the performance of tasks involving taste and smell stimuli suggest that some older individuals are impaired. The perceptual disadvantage of older adults appears to be more marked or more easily measured for complex than for simple stimuli. Some difference between older and younger adults may not be primarily sensory; others may arise from differences only incidentally associated with aging. The study of taste and smell perception in aging continues to challenge the psychophysical investigator to define the nature and extent of age-related change and to demonstrate its underlying mechanisms.  相似文献   

17.
Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.  相似文献   

18.
Rats were exposed to either 29 consecutive days of LiCl injections or 27 and 39 days of dietary Li2CO3, followed by injected LiCl at the end of the diet to insure a constant level of exposure to the drug. At the end of the period of chronic exposure to lithium, the rats were sacrificed and brain myo-inositol-1-phosphate phosphohydrolase (myo-inositol monophosphatase) activity was measured. In none of the experiments was there any difference in the lithium-sensitive activity toward myo-inositol monophosphatase when comparing the control and chronic groups. These brains and those from another group of rats that had been given Li2CO3 in their diet for 41 days, followed by 7 additional days of LiCl injections, were also examined for changes in the levels of the phosphoinositides. No reproducible differences in the absolute tissue levels of those lipids were found when control and chronic lithium groups were compared. These results are contrary to published reports which suggest that myo-inositol monophosphatase activity increases and that the phosphatidylinositol level decreases in rat brain as a result of chronic administration of lithium.  相似文献   

19.
This study investigated the effects of acute and chronic hyperprolinemia on glutamate uptake, as well as some mechanisms underlying the proline effects on glutamatergic system in rat cerebral cortex. The protective role of guanosine on effects mediated by proline was also evaluated. Results showed that acute and chronic hyperprolinemia reduced glutamate uptake, Na(+), K(+)-ATPase activity, ATP levels and increased lipoperoxidation. GLAST and GLT-1 immunocontent were increased in acute, but not in chronic hyperprolinemic rats. Our data suggest that the effects of proline on glutamate uptake may be mediated by lipid peroxidation and disruption of Na(+), K(+)-ATPase activity, but not by decreasing in glutamate transporters. This probably induces excitotoxicity and subsequent energy deficit. Guanosine was effective to prevent most of the effects promoted by proline, reinforcing its modulator role in counteracting the glutamate toxicity. However, further studies are needed to assess the modulatory effects of guanosine on experimental hyperprolinemia.  相似文献   

20.
The effects of electroconvulsive shock on the levels of acetylcholinesterase in several brain regions of the rat were studied. Hippocampus, mesencephalon, cortex, and striatum exhibited rapid changes in acetylcholinesterase activity during the first few minutes following the convulsion, whereas brainstem and basal forebrain levels remained unchanged. In both hippocampus and midbrain there was a sustained decrease in activity: the total acetylcholinesterase activity was decreased by up to 40% within 2 min of the convulsion and did not return to control values for another 3 h. Thirty minutes after a flurothyl-induced convulsion there was a similar fall in acetylcholinesterase activity in both these regions, whereas a subconvulsive electric shock produced no change. It is concluded that a convulsion produces significant short-term decreases in acetylcholinesterase activity in areas of the rat brain that are involved in the generation and propagation of seizures, and the question is raised of whether this is related to the increase in seizure threshold that follows a convulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号