首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulatory mechanism of state transitions was studied in Chlamydomonas reinhardtii (C.r.) wild type (WT) as well as mutant strains deficient in the photosystem I (PSI) or the photosystem II (PSII) core. Time-resolved fluorescence measurements were obtained on instantly frozen cells incubated beforehand in the dark in aerobic or anaerobic conditions which leads to state 1 (S1) or state 2 (S2). WT data contains information on the light-harvesting complex (LHC) connected to PSI and PSII. The mutants' data contain information on either LHCII-LHCI-PSI or LHCII-PSII, plus information on LHC antennas devoid of a PS core. In a simultaneous analysis of the data from all strains under S1 or S2 conditions a unified model for the excited state dynamics at 77 K was created. This yielded the completely resolved LHCII-LHCI-PSI and LHCII-PSII dynamics and quantified the state transitions. In WT cells the fraction of light absorbed by LHCII connected to PSII decreases from 45% in S1 to 29% in S2, while it increases from 0% to 16% for LHCII connected to PSI. Thus (16/45 =) 36% of all LHCII is involved in the state transition. In the mutant strains deficient in the PSI core, the red most species peaking at 716 nm disappears completely, indicating that this far red Chl pigment is located in the PSI core. In the mutant strain deficient in the PSII core, red shifted species with maxima at 684 and 686 nm appear in the LHCII antenna. LHCII-684 is quenched and decays with a rate of (310 ps)? 1.  相似文献   

2.
《BBA》2014,1837(2):315-325
The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810 nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4 · O2 evolution) which arrived at the PSI donor side after a delay of 2 ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712 nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment–protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI = 0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII = 0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145–155). At wavelengths less than 580 nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment–protein complexes.  相似文献   

3.
The life cycle of Photosystem II (PSII) is embedded in a network of proteins that guides the complex through biogenesis, damage and repair. Some of these proteins, such as Psb27 and Psb28, are involved in cofactor assembly for which they are only transiently bound to the preassembled complex. In this work we isolated and analyzed PSII from a ΔpsbJ mutant of the thermophilic cyanobacterium Thermosynechococcus elongatus. From the four different PSII complexes that could be separated the most prominent one revealed a monomeric Psb27–Psb28 PSII complex with greatly diminished oxygen-evolving activity. The MALDI-ToF mass spectrometry analysis of intact low molecular weight subunits (< 10 kDa) depicted wild type PSII with the absence of PsbJ. Relative quantification of the PsbA1/PsbA3 ratio by LC-ESI mass spectrometry using 15N labeled PsbA3-specific peptides indicated the complete replacement of PsbA1 by the stress copy PsbA3 in the mutant, even under standard growth conditions (50 μmol photons m? 2 s? 1). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

4.
《BBA》2014,1837(2):264-269
Photosystem II (PSII) is the pigment–protein complex which converts sunlight energy into chemical energy by catalysing the process of light-driven oxidation of water into reducing equivalents in the form of protons and electrons. Three-dimensional structures from x-ray crystallography have been used extensively to model these processes. However, the crystal structures are not necessarily identical to those of the solubilised complexes. Here we compared picosecond fluorescence of solubilised and crystallised PSII core particles isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The fluorescence of the crystals is sensitive to the presence of artificial electron acceptors (K3Fe(CN)3) and electron transport inhibitors (DCMU). In PSII with reaction centres in the open state, the picosecond fluorescence of PSII crystals and solubilised PSII is indistinguishable. Additionally we compared picosecond fluorescence of native PSII with PSII in which Ca2 in the oxygen evolving complex (OEC) is biosynthetically replaced by Sr2 +. With the Sr2 + replaced OEC the average fluorescence decay slows down slightly (81 ps to 85 ps), and reaction centres are less readily closed, indicating that both energy transfer/trapping and electron transfer are affected by the replacement.  相似文献   

5.
Haberlea rhodopensis is a homoiochlorophyllous resurrection plant that shows a low rate of leaf net CO2 uptake (4–6 μmol m?2 s?1) under saturating photosynthetic photon flux densities in air (21% O2 and about 390 ppm CO2). However, leaf net CO2 uptake reaches values of 17–18 μmol m?2 s?1 under saturating CO2 and light. H. rhodopensis leaves have a very low mesophyll CO2 conductance that can partly explain the low rate of leaf net CO2 uptake in normal air. Experimental evidences suggest that mesophyll conductance is not sensitive to temperature in the 20–35 °C range. In addition, it is shown that the (1) transpiration rate of H. rhodopensis is nearly linearly related to the vapour pressure difference between the leaf and the ambient air within the interval from 0.5 kPa to 2.5 kPa at a leaf temperature of 25 °C and (2) leaf net CO2 uptake in normal air under saturating light does not change much with leaf temperature (between 20 °C and 30 °C). At a leaf relative water content of between 90% and 30%, the decrease of leaf net CO2 assimilation during drought can be explained by a decrease of leaf CO2 diffusional conductance. Accordingly the non-photochemical chlorophyll fluorescence quenching decreases only at relative water contents lower than 20%, indicating that photosynthetic activity maintains a trans-thylakoidal proton gradient over a wide range of leaf water contents. Moreover, PSII photochemistry (as estimated by the Fv/Fm ratio and the thermoluminescence B band intensity) is only affected at leaf relative water contents lower than about 20%, thus confirming that primary photosynthetic reactions are resistant to drought. Interestingly, the effect of leaf desiccation on photosynthetic capacity, measured at very high ambient CO2 molar ratios under saturating PPFD, is identical to that observed for three non-resurrection C3 mesophytes. This demonstrates that the photosynthetic apparatus of H. rhodopensis is not more resistant to desiccation when compared to other C3 plants. Since the leaf area decreases by more than 50% when the leaf relative water content is reduced to about 40% during drought it is supposed, following Farrant et al. [Farrant, J.M., Vander, W.C., Lofell, D.A., Bartsch, S., Whittaker, A., 2003. An investigation into the role of light during desiccation of three angiosperms resurrection plants. Plant Cell Environ. 26, 1275–1286], that H. rhodopensis leaf cells avoid mechanical stress.  相似文献   

6.
Plants use a small part of the total absorbed light energy for net carboxylation, while the remaining amount is dissipated via alternative pathways involving thermal processes, fluorescence and non-carboxylation photochemistry in order to limit the formation of reactive oxygen species (ROS) and other photooxidative risks. The commonly used analysis of the Photosystem II (PSII) fluorescence signals gives qualitative information about absorbed light energy management by plants, but it is difficult to appreciate the relative contribution of each pathway in energy partitioning.This study reports the application of quenching partitioning through a chlorophyll fluorescence approach performed on peach leaves subjected to three different light intensities for four durations of exposure in absence of recovery from photo-damage. This methodology was compared with the P700 redox kinetic method for determining the functional PSII fraction in leaves. In the absence of recovery processes the active PSII concentration decayed with an increase in photon exposure (the product of irradiance and the time of exposure), following an exponential pattern according to the reciprocity law. The photoprotective thermal dissipation (ΦNPQ) was proportional to irradiance up to 30 min of photoinhibitory treatment. Afterwards ΦNPQ was limited by the increasing competition for the absorbed energy re-emitted by the inactive PSII (ΦNF). ΦNF increased with the photon exposure dissipating up to 70% of the total incoming energy. The energy funnelled to photochemistry (ΦPSII) decreased with increasing exposure time or intensity, becoming zero after 120 min of photoinhibitory treatment at the maximum irradiance (2100 μmol photon m−2 s−1). The relation between the fraction of energy dissipated by the inactive PSII (derived from the quenching partitioning) and the inactive PSII fraction (measured with the P700 redox kinetic method) was linear.The quenching partitioning through light-modulated chlorophyll fluorescence is a useful tool to analyse plant energy management and gives also a reasonable estimation of the active PSII fraction. This methodology can easily be used in the field as measurements are rapid, non-destructive and detection devices are portable.  相似文献   

7.
《FEBS letters》2014,588(23):4364-4368
O2 reduction was investigated in photosystem I (PS I) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PS I complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PS I.  相似文献   

8.
Functional roles of an anionic lipid phosphatidylglycerol (PG) were studied in pgsA-gene-inactivated and cdsA-gene-inactivated/phycobilisome-less mutant cells of a cyanobacterium Synechocystis sp. PCC 6803, which can grow only in PG-supplemented media. 1) A few days of PG depletion suppressed oxygen evolution of mutant cells supported by p-benzoquinone (BQ). The suppression was recovered slowly in a week after PG re-addition. Measurements of fluorescence yield indicated the enhanced sensitivity of QB to the inactivation by BQ. It is assumed that the loss of low-affinity PG (PGL) enhances the affinity for BQ that inactivates QB. 2) Oxygen evolution without BQ, supported by the endogenous electron acceptors, was slowly suppressed due to the direct inactivation of QB during 10 days of PG depletion, and was recovered rapidly within 10 h upon the PG re-addition. It is concluded that the loss of high-affinity PG (PGH) displaces QB directly. 3) Electron microscopy images of PG-depleted cells showed the specific suppression of division of mutant cells, which had developed thylakoid membranes attaching phycobilisomes (PBS). 4) Although the PG-depletion for 14 days decreased the chlorophyll/PBS ratio to about 1/4, florescence spectra/lifetimes were not modified indicating the flexible energy transfer from PBS to different numbers of PSII. Longer PG-depletion enhanced allophycocyanin fluorescence at 683 nm with a long 1.2 ns lifetime indicating the suppression of energy transfer from PBS to PSII. 5) Action sites of PGH, PGL and other PG molecules on PSII structure are discussed.  相似文献   

9.
《Journal of plant physiology》2014,171(10):868-875
Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5 mmol L−1) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba × P. berolinensis) to gaseous NO2 (4 μl 1−1) for three time periods (0, 14 and 48 h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48 h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13–15 s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface.  相似文献   

10.
Tenuazonic acid (TeA) is a putative phytotoxin obtained from Alternaria alternata, the organism that can cause brown leaf spot disease of Crofton weed (Eupatorium adenophorum). It is demonstrated here that the tenuazonic acid inhibits the activity of photosystem II (PSII); the I50-value is 48 μg mL?1. Evidences from chlorophyll fluorescence show that tenuazonic acid interrupts electron transport between QA and QB on the acceptor side of PSII. It does not have an effect on the antenna pigments, the oxygen-evolving complex (OEC) at the donor side of PSII. On the basis of the fluorescence induction kinetics and competition experiments with [14C]atrazine, it is shown that tenuazonic acid does not share the same binding environment with atrazine despite their common action target: the QB-site. It is concluded that tenuazonic acid is a member of a novel class of PSII inhibitors.  相似文献   

11.
Thermoimaging – a highly sensitive and non-invasive method of temperature measurement – was applied to explore the role of changing photosynthetic efficiency in light-induced heating of tobacco (Nicotiana tabacum cv. Samsun) leaves. In the absence of evaporative cooling through the stomata, which was achieved by covering leaves with Vaseline, illumination with 50–1400 μM photons m?2 s?1 intensity of photosynthetically active radiation resulted in ≈1–5 °C leaf temperature increase in about 2 min. The heating effect showed a non-linear correlation with the extent of non-photochemical quenching (NPQ) resulting in higher leaf temperatures at higher NPQ values. When leaves were adapted to excessive irradiance (1300 μM photons m?2 s?1 for 6 h), which resulted in reduction of photosynthetic efficiency and amplification of NPQ the light-induced heating effect was enhanced. The experimental results have been explained on the basis of a simple theoretical model characterizing the balance of energy fluxes in leaves in relation to the efficiency of photosystem II photochemistry and non-photochemical quenching. The role of alternative energy dissipation pathways outside of PSII in the phenomenon of light-induced leaf heating is also discussed.  相似文献   

12.
Calmodulin (CaM), a calcium-regulated protein, regulates the activity of a number of key enzymes and plays important roles in cellular responses to environmental changes. The Arabidopsis thaliana genome contains nine calmodulin (CAM) genes. To understand the role of specific CAM genes in heat stress, the steady-state level of mRNA for the nine CAM genes in root and shoot tissues of seedlings grown at normal growth temperature (25 °C) and during heat stress at 42 °C for 2 h was compared in T-DNA insertional mutant lines of 7 CAM genes and the wild type using gene specific primers and RT-PCR. Compared to growth at 25 °C, the mRNA levels of all CAM genes were up-regulated in both root and shoot after heat treatment with the notable exception of CAM5 in root and shoot, and CAM1 in shoot where the mRNA levels were reduced. At 25 °C all cam mutants showed varying levels of mRNA for corresponding CAM genes with the highest levels of CAM5 gene mRNA being found in cam5-1 and cam5-3. CAM5 gene mRNA was not observed in the cam5-4 allele which harbors a T-DNA insertion in exon II. The level of respective CAM gene mRNAs were reduced in all cam alleles compared to levels in wild type except for increased expression of CAM5 in roots and shoots of cam5-1 and cam5-3. Compared to wild type, the level of mRNA for all CAM genes varied in each cam mutant, but not in a systematic way. In general, any non-exonic T-DNA insertion produced a decrease in the mRNA levels of the CAM2 and CAM3 genes, and the levels of CAM gene mRNAs were the same as wild type or lower in the cam1, cam4, cam5-2, and cam6-1 non-exonic mutant alleles. However, the level of mRNA for all genes except CAM2 and CAM3 genes was up-regulated in all cam2 and cam3 alleles and in the cam5-1 and cam5-3 alleles. During heat stress at 42 °C the level of CAM gene mRNAs were also variable between insertional mutants, but the level of CAM1 and CAM5 gene mRNAs were consistently greater in response to heat stress in both root and shoot. These results suggest differential tissue-specific expression of CAM genes in root and shoot tissues, and specific regulation of CAM gene mRNA levels by heat. Each of the CAM genes appears to contain noncoding regions that play regulatory roles resulting in interaction between CAM genes leading to changes in specific CAM gene mRNA levels in Arabidopsis. Only exonic insertion in CAM5 gene resulted in a loss-of-function of CAM5 gene among the mutants we surveyed in this study.  相似文献   

13.
We previously showed that most subunits in the oxygen-evolving photosystem II (PSII) preparation from the diatom Chaetoceros gracilis are proteolytically unstable. Here, we focused on identifying the proteases that cleave PSII subunits in thylakoid membranes. Major PSII subunits and fucoxanthin chlorophyll (Chl) a/c‐binding proteins (FCPs) were specifically degraded in thylakoid membranes. The PSI subunits, PsaA and PsaB, were slowly degraded, and cytochrome f was barely degraded. Using zymography, proteolytic activities for three metalloproteases (116, 83, and 75 kDa) and one serine protease (156 kDa) were detected in thylakoid membranes. Two FCP fractions (FCP-A and FCP-B/C) and a photosystem fraction were separated by sucrose gradient centrifugation using dodecyl maltoside‐solubilized thylakoids. The FCP-A fraction featured enriched Chl c compared with the bulk of FCP-B/C. Zymography revealed that 116, 83, and 94 kDa metalloproteases were mostly in the FCP-A fraction along with the 156 kDa serine protease. When solubilized thylakoids were separated with clear-native PAGE, zymography detected only the 83 kDa metalloprotease in the FCP-A band. Because FCP-A is selectively associated with PSII, these FCP-A-associated metalloproteases and serine protease may be responsible for the proteolytic degradation of FCPs and PSII in thylakoid membranes.  相似文献   

14.
Plant responses to warming, elevated CO2, and changes in summer precipitation patterns involve complex interactions. In this study we aim to reveal the single factor responses and their interactive effects on photosystem II (PSII) performance during an autumn-to-winter period. The study was carried out in the CLIMAITE multifactor experiment, which includes the combined impact of elevated CO2 (free air carbon enrichment; CO2), warming (passive nighttime warming; T) and summer drought (rain-excluding curtains; D) in a temperate heath ecosystem. PSII performance was probed by the effective quantum yield in light, Fv′/Fm′, using the pulse amplitude methodology, and the total performance index, PItotal, which integrate changes of the chlorophyll-a fluorescence transient including the maximal quantum yield in darkness, Fv/Fm.Decreasing temperature during autumn linearly reduced PItotal, both in the wavy hair-grass, Deschampsia flexuosa, and in the evergreen dwarf shrub common heather, Calluna vulgaris, and following freezing events the PItotal and Fv′/Fm′ were reduced even more. Contrary to expected, indirect effects of the previous summer drought reduced PSII performance before freezing events, particularly in Calluna. In combinations with elevated CO2 interactive effects with drought, D × CO2 and warming, T × D × CO2, were negatively skewed and caused the reduction of PSII performance in both species after occurrence of freezing events. Neither passive nighttime warming nor elevated CO2 as single factors reduced PSII performance via incomplete cold hardening as hypothesized. Instead, the passive nighttime warming strongly increased PSII performance, especially after freezing events, and when combined with elevated CO2 a strongly skewed positive T × CO2 interactive effect was seen. This indicates that these plants take advantage of the longer growing season induced by the warming in elevated CO2 until a winter frost period becomes permanent. However, if previously exposed to summer drought this positive effect reverses via interactive D × CO2 and T × D × CO2 effects immediately after freezing events, causing the full combination of TDCO2 not to differ from the control.In a future warmer climate with high CO2 and summer drought, the occurrence of freezing events thus seem highly decisive for reducing PSII performance in the autumn-to-winter period. Such a reduced robustness of PSII performance may be highly decisive for the magnitude of the late season photosynthetic carbon uptake and reduce the growing season length in these temperate heath plants.  相似文献   

15.
Pseudomonas chlororaphis GP72 is an important plant growth-promoting rhizobacteria (PGPR) with a wide-spectrum antibiotic activity toward several soil-borne pathogens. The adaption of this strain to different environmental oxidative stress and redox phenazine pigment by the predicted regulator OxyR were investigated. The deletion of oxyR led to a significant reduction of the viability, production of three phenazine derivatives and resistance to hydrogen peroxide and paraquat on the KB agar plates. However, the mutant ΔoxyR grew better with shorter delay. In addition, the mutant ΔoxyR showed an increased resistance to hydrogen peroxide, which occurred at the concentration varying from 1.0 mM to 5.0 mM in the KB broth, as compared with the wild type. In addition, the biofilm formation ability was obviously enhanced and influenced by the different oxidants in the mutant. Quantitative RT-PCR experiments indicated that the expression of katG, ahpC, ahpD and phzE were increased in the oxyR mutant background in response to hydrogen peroxide. katG was mainly responsible for the enhanced resistance to hydrogen peroxide. The loss of oxyR is suggested to benefit the hydrogen peroxide inducible gene expression. Thus, OxyR is an important global regulator that regulates multiple pathways to enhance the survival of P. chlororaphis GP72 exposed to different oxidative stresses.  相似文献   

16.
Mutation and immobilization techniques were applied to uridine phosphorylase (UP) from Escherichia coli in order to enhance its thermal stability and hence productivity in a biocatalytic reaction. UP was evolved by iterative saturation mutagenesis. Compared to the wild type enzyme, which had a temperature optimum of 40 °C and a half-life of 9.89 h at 60 °C, the selected mutant had a temperature optimum of 60 °C and a half-life of 17.3 h at 60 °C. Self-immobilization of the native UP as a Spherezyme showed a 3.3 fold increase in thermostability while immobilized mutant enzyme showed a 4.4 fold increase in thermostability when compared to native UP. Combining UP with the purine nucleoside phosphorylase from Bacillus halodurans allows for synthesis of 5-methyluridine (a pharmaceutical intermediate) from guanosine and thymine in a one-pot transglycosylation reaction. Replacing the wild type UP with the mutant allowed for an increase in reaction temperature to 65 °C and increased the reaction productivity from 10 to 31 g l−1 h−1.  相似文献   

17.
We studied the difference in thermostability of photosystem Ⅱ (PSII) and leaf lipid composition between a T-DNA insertion mutant rice (Oryza sativa L.) VG28 and its wild type Zhonghuau. Native green gel and SDS-PAGE electrophoreses revealed that the mutant VG28 lacked all light-harvesting chlorophyll a/b protein complexes. Both the mutant and wild type were sensitive to high temperatures, and the maximal efficiency of PSII photochemistry (FJ Fm) and oxygen-evolving activity of PSII in leaves significantly decreased with increasing temperature. However, the PSII activity of the mutant was markedly more sensitive to high temperatures than that of the wild type. Lipid composition analysis showed that the mutant had less phosphatidylglycerol and sulfoquinovosyl diacylglycerol compared with the wild type. Fatty acid analysis revealed that the mutant had an obvious decrease in the content of 16:1t and a marked increase in the content of 18:3 compared with the wild type. The effects of lipid composition and unsaturation of membrane lipids on the thermostability of PSII are discussed.  相似文献   

18.
Rapid light curves: A powerful tool to assess photosynthetic activity   总被引:3,自引:0,他引:3  
《Aquatic Botany》2005,82(3):222-237
  相似文献   

19.
Deinococcus radiodurans, one of the most radioresistant organisms known to date is able to reconstruct an intact genome from hundreds of DNA fragments. Here, we investigate the in vivo role of PprA, a radiation-induced Deinococcus specific protein. We report that DNA double strand break repair in cells devoid of PprA and exposed to 3800 Gy γ-irradiation takes place efficiently with a delay of only 1 h as compared to the wild type, whereas massive DNA synthesis begins 90 min after irradiation as in the wild type, a phenotype insufficient to explain the severe radiosensitivity of the ΔpprA mutant. We show that the slow kinetics of reassembly of DNA fragments in a ΔpprA ΔrecA double mutant was the same as that observed in a ΔrecA single mutant demonstrating that PprA does not play a major role in DNA repair through RecA-independent pathways. Using a tagged PprA protein and immunofluorescence microscopy, we show that PprA is recruited onto the nucleoid after γ-irradiation before DNA double strand break repair completion, and then is found as a thread across the septum in dividing cells. Moreover, whereas untreated cells devoid of PprA displayed a wild type morphology, they showed a characteristic cell division abnormality after irradiation not found in other radiosensitive mutants committed to die, as DNA is present equally in the two daughter cells but not separated at the division septum. We propose that PprA may play a crucial role in the control of DNA segregation and/or cell division after DNA double strand break repair.  相似文献   

20.
《Aquatic Botany》2007,87(1):61-68
An annual cycle of biomass and productivity of wild celery (Vallisneria americana) was studied in Kings Bay, FL, USA. In situ growth rates were measured monthly between March 2001 and June 2002 in high-density stands, using a modified hole-punching technique, and applied to shoot density data to obtain areal estimates of production. Mean shoot density varied greatly over the study period, ranging between 200 and 800 shoots m−2. Mean total biomass ranged between 162 and 1013 g m−2, with aboveground material comprising, on average, 70% of total biomass. Total annual estimated production of new attached shoots was 519 g m−2. Leaf growth rates peaked at >50 mg shoot−1 d−1, and mass-specific leaf growth ranged 0.6–1.8% d−1. Annually, individual shoots produced 7.4 g of leaf material and completely replaced standing leaf biomass 3.5 times. Areal leaf production was highest in late spring/summer of 2001, and ranged between 3.6 and 23.0 g m−2 d−1. Annual total leaf production was 2704 g m−2. Seasonality was not apparent in most variables monitored monthly; only 1 of the 64 relationships we examined between environmental variables (nutrients, chlorophyll a, and irradiance) and Vallisneria biological variables were significant, with relative growth rate increasing linearly with irradiance. Peak biomass and productivity of Vallisneria in Kings Bay were high compared to literature values for other Vallisneria populations as well as global averages for well-studied seagrasses, emphasizing the potential importance of Vallisneria to whole ecosystem functioning in springs, lakes, and oligohaline reaches of many estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号