首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cognitive problems are a major factor determining quality of life of patients with Parkinson''s disease. These include deficits in inhibitory control, ranging from subclinical alterations in decision-making to severe impulse control disorders. Based on preclinical studies, we proposed that Parkinson''s disease does not cause a unified disorder of inhibitory control, but rather a set of impulsivity factors with distinct psychological profiles, anatomy and pharmacology. We assessed a broad set of measures of the cognitive, behavioural and temperamental/trait aspects of impulsivity. Sixty adults, including 30 idiopathic Parkinson''s disease patients (Hoehn and Yahr stage I–III) and 30 healthy controls, completed a neuropsychological battery, objective behavioural measures and self-report questionnaires. Univariate analyses of variance confirmed group differences in nine out of eleven metrics. We then used factor analysis (principal components method) to identify the structure of impulsivity in Parkinson''s disease. Four principal factors were identified, consistent with four different mechanisms of impulsivity, explaining 60% of variance. The factors were related to (1) tests of response conflict, interference and self assessment of impulsive behaviours on the Barrett Impulsivity Scale, (2) tests of motor inhibitory control, and the self-report behavioural approach system, (3) time estimation and delay aversion, and (4) reflection in hypothetical scenarios including temporal discounting. The different test profiles of these four factors were consistent with human and comparative studies of the pharmacology and functional anatomy of impulsivity. Relationships between each factor and clinical and demographic features were examined by regression against factor loadings. Levodopa dose equivalent was associated only with factors (2) and (3). The results confirm that impulsivity is common in Parkinson''s disease, even in the absence of impulse control disorders, and that it is not a unitary phenomenon. A better understanding of the structure of impulsivity in Parkinson''s disease will support more evidence-based and effective strategies to treat impulsivity.  相似文献   

2.
Soluble proline endopeptidase (EC 3.4.21.26) activity was measured by a fluorometric assay in eight human brain areas (caudate nucleus, lateral globus pallidus, medial globus pallidus, substantia nigra-zona compacta, substantia nigra-zona reticulata, frontal cortex-Brodmann area 10, temporal cortex-Brodmann area 38, and hippocampus), in 10 control and 10 Huntington's disease brains. An abnormally low activity (22% of control activity) was found in the caudate nucleus of Huntington's disease brains; significantly decreased activity was also detected in the lateral globus pallidus and medial globus pallidus (37% and 40% of control, respectively).  相似文献   

3.
4.
This work represents an attempt to elucidate the neurochemical processes in the basal ganglia by mathematical modelling. The correlation between neurochemistry and electrophysiology has been used to construct a dynamical system based on the basal ganglia’s network structure. Mathematical models were constructed for different physical scales to reformulate the neurochemical and electrophysiological behaviour from synapses up to multi-compartment systems. Transformation functions have been developed to transit between the different scales. We show through numerical simulations that this network produces oscillations in the electrical potentials as well as in neurotransmitter concentrations. In agreement with pharmacological experiments, a parameter sensitivity analysis reveals temporary changes in the neurochemical and electrophysiological systems after single exposure to antipsychotic drugs. This behaviour states the structural stability of the system. The correlation between the neurochemical dynamics and drug-induced behaviour provides the perspective for novel neurobiological hypotheses.  相似文献   

5.
Parkinson''s disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson''s Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.  相似文献   

6.

Background

Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, α-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat.

Methods and Findings

The motor behavior was examined by the open field actimeter and the neuronal activity of basal ganglia nuclei was investigated using extracellular single unit recordings on urethane anesthetized rats. We show that α-flupentixol induced EPS paralleled by a decrease in the firing rate and a disorganization of the firing pattern in both substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN). Furthermore, α-flupentixol induced an increase in the firing rate of globus pallidus (GP) neurons. In the striatum, we recorded two populations of medium spiny neurons (MSNs) after their antidromic identification. At basal level, both striato-pallidal and striato-nigral MSNs were found to be unaffected by α-flupentixol. However, during electrical cortico-striatal activation only striato-pallidal, but not striato-nigral, MSNs were found to be inhibited by α-flupentixol. Together, our results suggest that the changes in STN and SNr neuronal activity are a consequence of increased neuronal activity of globus pallidus (GP). Indeed, after selective GP lesion, α-flupentixol failed to induce EPS and to alter STN neuronal activity.

Conclusion

Our study reports strong evidence to show that hypokinesia and catalepsy induced by α-flupentixol are triggered by dramatic changes occurring in basal ganglia network. We provide new insight into the key role of GP in the pathophysiology of APD-induced EPS suggesting that the GP can be considered as a potential target for the treatment of EPS.  相似文献   

7.

Objective

In Parkinson''s disease (PD), commonly reported risk factors for malnutrition in other populations commonly occur. Few studies have explored which of these factors are of particular importance in malnutrition in PD. The aim was to identify the determinants of nutritional status in people with Parkinson''s disease (PWP).

Methods

Community-dwelling PWP (>18 years) were recruited (n = 125; 73M/52F; Mdn 70 years). Self-report assessments included Beck''s Depression Inventory (BDI), Spielberger Trait Anxiety Inventory (STAI), Scales for Outcomes in Parkinson''s disease – Autonomic (SCOPA-AUT), Modified Constipation Assessment Scale (MCAS) and Freezing of Gait Questionnaire (FOG-Q). Information about age, PD duration, medications, co-morbid conditions and living situation was obtained. Addenbrooke''s Cognitive Examination (ACE-R), Unified Parkinson''s Disease Rating Scale (UPDRS) II and UPDRS III were performed. Nutritional status was assessed using the Subjective Global Assessment (SGA) as part of the scored Patient-Generated Subjective Global Assessment (PG-SGA).

Results

Nineteen (15%) were malnourished (SGA-B). Median PG-SGA score was 3. More of the malnourished were elderly (84% vs. 71%) and had more severe disease (H&Y: 21% vs. 5%). UPDRS II and UPDRS III scores and levodopa equivalent daily dose (LEDD)/body weight(mg/kg) were significantly higher in the malnourished (Mdn 18 vs. 15; 20 vs. 15; 10.1 vs. 7.6 respectively). Regression analyses revealed older age at diagnosis, higher LEDD/body weight (mg/kg), greater UPDRS III score, lower STAI score and higher BDI score as significant predictors of malnutrition (SGA-B). Living alone and higher BDI and UPDRS III scores were significant predictors of a higher log-adjusted PG-SGA score.

Conclusions

In this sample of PWP, the rate of malnutrition was higher than that previously reported in the general community. Nutrition screening should occur regularly in those with more severe disease and depression. Community support should be provided to PWP living alone. Dopaminergic medication should be reviewed with body weight changes.  相似文献   

8.
Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson''s disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson''s disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson''s disease.  相似文献   

9.
10.

Background

Locating the pyramidal tract (PT) is difficult in patients with thalamic or basal ganglia tumors, especially when the surrounding anatomical structures cannot be identified using computed tomography or magnetic resonance images. Hence, we objected to find a way to predict the location of the PT in patients with thalamic and basal ganglia tumors

Methodology/Principal Findings

In 59 patents with thalamic or basal ganglia tumors, the PTs were constructed by with diffusion tensor imaging (DTI)-based fiber tracking (FT). In axial slices crossing the foramen of Monro, the tumor position was classified according to three lines. Line 1 was vertical and crossed the vertex point of the anterior limbs of the internal capsule. Lines 2 and line 3 were horizontal and crossed the foramen of Monro and joint of the middle and lateral thirds of the posterior limbs, respectively. Six (10.17%) patients were diagnosed with type 1 tumor, six (10.17%) with type 2, seven (11.86%) with type 3a, five (8.47%) with type 3b, 17 (28.81%) with type 4a, six (10.17%) with type 4b, three (5.08%) with type 5, and nine (15.25%) with type 6. In type 1 tumors, the PTs were located at the 12 o''clock position of the tumor, type 2 at six o''clock, type 3a between nine and 12 o''clock, type 3 between six and nine o''clock, type 4a between 12 and three o''clock, type 4b at three o''clock, type 5 between six and nine o''clock, and type 6 between three and six o''clock.

Conclusions/Significance

The position of the PT relative to the tumor could be determined according to the tumor location. These results could prove helpful in determining the location of the PT preoperatively.  相似文献   

11.

Objective

Decrease of olfactory function in Parkinson''s disease (PD) is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from “training” with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function.

Methods

We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training). Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves). Olfactory testing was performed before and after training using the “Sniffin'' Sticks” (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification) in addition to threshold tests for the odors used in the training process.

Results

Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin'' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training.

Conclusion

The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.  相似文献   

12.

Background

Enlarged perivascular spaces (EPVS) correlate with cognitive impairment and incident dementia. However, etiologies for severe basal ganglia EPVS (BG-EPVS) are still unclear. Our aim was to investigate the independent risk factors for severe BG-EPVS in patients with acute lacunar stroke.

Methods

We prospectively identified patients with lacunar stroke (diameter on DWI ≤ 20mm) from Jan 2011 to May 2015. Patients with severe BG-EPVS were identified on T2 weighted MRI. Age (± 1 year) and sex matched controls were also recruited in the same population (two controls for one case). Vascular risk factors, clinical data, EPVS in centrum semiovale (rated 0 to 4), white matter hyperintensities (WMH) (by Fazekas scale), brain atrophy (rated 0 to 6) were compared between two groups. Logistic regression was performed to determine independent risk factors for severe BG-EPVS.

Results

During study period, 89 patients with severe BG-EPVS and 178 matched controls were included. Vascular risk factors did not differ between two groups. Patients with severe BG-EPVS had lower level of HbA1c and diastolic BP at admission, but presented with larger infarct size, more severe WMH (including total WMH, periventricular WMH and deep WMH) and brain atrophy. In logistic regression, brain atrophy (OR = 1.40; 95%CI 1.13, 1.73) and deep WMH (OR = 1.88; 95%CI 1.24, 2.83) were independent risk factors for severe BG-EPVS.

Conclusions

Brain atrophy and deep WMH are independent risk factors for severe BG-EPVS, supporting the hypothesis that brain atrophy may be associated with the development of EPVS in basal ganglia.  相似文献   

13.
Parkinson disease (PD) is the second leading neurodegenerative disease in the US. As there is no known cause or cure for PD, researchers continue to investigate disease mechanisms and potential new therapies in cell culture and in animal models of PD. In PD, one of the most profoundly affected neuronal populations is the tyrosine hydroxylase (TH)-expressing dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc). These DA-producing neurons undergo degeneration while neighboring DA-producing cells of the ventral tegmental area (VTA) are largely spared. To aid in these studies, The Michael J. Fox Foundation (MJFF) partnered with Thomas Jefferson University and Taconic Inc. to generate new transgenic rat lines carrying the human TH gene promoter driving EGFP using a 11 kb construct used previously to create a hTH-GFP mouse reporter line. Of the five rat founder lines that were generated, three exhibited high level specific GFP fluorescence in DA brain structures (ie. SN, VTA, striatum, olfactory bulb, hypothalamus). As with the hTH-GFP mouse, none of the rat lines exhibit reporter expression in adrenergic structures like the adrenal gland. Line 12141, with its high levels of GFP in adult DA brain structures and minimal ectopic GFP expression in non-DA structures, was characterized in detail. We show here that this line allows for anatomical visualization and microdissection of the rat midbrain into SNpc and/or VTA, enabling detailed analysis of midbrain DA neurons and axonal projections after toxin treatment in vivo. Moreover, we further show that embryonic SNpc and/or VTA neurons, enriched by microdissection or FACS, can be used in culture or transplant studies of PD. Thus, the hTH-GFP reporter rat should be a valuable tool for Parkinson''s disease research.  相似文献   

14.
The aim of this study is to identify and validate protein change in the serum from PD patients. We used serum samples from 21 PD patients and 20 age-matched normal people as control to conduct a comparative proteomic study. We performed 2-DE and analyzed the differentially expressed protein spots by LC-MS/MS. In PD group 13 spots were shown to be differentially expressed compared to control group. They were identified as 6 proteins. Among these, 3 proteins were confirmed by Western blot analysis. It showed that the frequency of fibrinogen γ-chain (FGG) appeared 70% in PD, which could not be detected in control group. The protein of inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4) was found to exist two forms in serum. The full size (120 kDa) of the protein was increased and the fragmented ITI-H4 (35 kDa) was decreased in PD group. The ratio of full size ITI-H4 to fragmented ITI-H4 in PD patients was 3.85±0.29-fold higher than in control group. Furthermore, fragmented Apo A-IV (∼26 kDa) was mainly detected in control group, while it was rare to be found in PD group. Above findings might be useful for diagnosis of PD. When the expressions of FGG and 120 kDa ITI-H4 are increase, as well as ∼26 kDa Apo A-IV disappear would provide strong evidence for PD.  相似文献   

15.
Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson''s disease (PD) are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs) were recruited and underwent resting-state functional magnetic resonance imaging (fMRI). Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies) were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD) from the NCs using linear discriminant analysis. The results demonstrate that the subtype-specific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen), limbic regions (i.e., the hippocampus and thalamus), the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus). In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes.  相似文献   

16.
Abstract

Recent studies on the neurotransmitter organization of the basal ganglia and forebrain in lower vertebrates suggest that, in contrast to the old concepts of the phylogeny of the brain, there are many similarities between the chemical organization of the brain throughout evolution. By examining neurotransmitter receptors using in vitro autoradiography we have attempted to further our understanding of the evolution of the brain. Receptors enriched in different parts of the basal ganglia in mammals appear to be also enriched in the homologous areas in lower vertebrates. Thus, for example, dopamine and muscarinic receptors, but not serotonin-1A, are enriched in the paleostriatum augmentatum while GABA/benzo-diazepine receptors are enriched in the paleostriatum primitivum corresponding with their localization to the caudate-putamen and globus pallidus respectively. Our results support the concept of a more conservative evolution of the vertebrate brain and demonstrate the usefulness of receptor autoradiography in the understanding of brain evolution.  相似文献   

17.
18.
19.

Background

Tripping over obstacles is the major cause of falls in community-dwelling patients with Parkinson''s disease (PD). Understanding the factors associated with the obstacle crossing behavior may help to develop possible training programs for crossing performance. This study aimed to identify the relationships and important factors determining obstacle crossing performance in patients with PD.

Methods

Forty-two idiopathic patients with PD (Hoehn and Yahr stages I to III) participated in this study. Obstacle crossing performance was recorded by the Liberty system, a three-dimensional motion capture device. Maximal isometric strength of the lower extremity was measured by a handheld dynamometer. Dynamic balance and sensory integration ability were assessed using the Balance Master system. Movement velocity (MV), maximal excursion (ME), and directional control (DC) were obtained during the limits of stability test to quantify dynamic balance. The sum of sensory organization test (SOT) scores was used to quantify sensory organization ability.

Results

Both crossing stride length and stride velocity correlated significantly with lower extremity muscle strength, dynamic balance control (forward and sideward), and sum of SOT scores. From the regression model, forward DC and ankle dorsiflexor strength were identified as two major determinants for crossing performance (R2 = .37 to.41 for the crossing stride length, R2 = .43 to.44 for the crossing stride velocity).

Conclusions

Lower extremity muscle strength, dynamic balance control and sensory integration ability significantly influence obstacle crossing performance. We suggest an emphasis on muscle strengthening exercises (especially ankle dorsiflexors), balance training (especially forward DC), and sensory integration training to improve obstacle crossing performance in patients with PD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号