首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Contaminating fungi, such as Fusarium species, produce metabolites that may interfere with normal barley grain proteolysis pattern and consequently, affect malt and beer quality. Protein compositional changes of an initial mixture of 20 % Fusarium culmorum infected and 80 % noninfected mature barley grains and respective malt are reported here. Proteolytic activity of infected barley grains (IBG) and respective malt, with controls (uninfected grains), were characterized using protease inhibitors from each class of this enzyme, including metallo-, cysteine, serine, and aspartic proteases, as well as uninhibited protease fractions. The proteins were extracted according to the Osborne fractionation and separated by size exclusion chromatography. Additionally, two-dimensional (2D) gel electrophoresis (GE) was used to analyze hydrophobic storage proteins isolated from the control and IBG. Analyses revealed that F. culmorum IBG had a twofold increase of proteolytic activity compared to the control sample, which showed an increase in all protease classes with aspartic proteases dominating. Infected and control malt grains were comparable with cysteine proteases representing almost 50 % of all proteolytic enzymes detected. Protein extractability was 31 % higher in IBG compared to the control barley. The albumin fraction showed that several metabolic proteins decreased and increased at different rates during infection and malting, thus showing a complex F. culmorum infection interdependence. Prolamin storage proteins were more hydrophobic during barley fungal infection. F. culmorum interfered with the grain hydrolytic protein profile, thereby altering the grain's protein content and quality.  相似文献   

3.
Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests.  相似文献   

4.
Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC–nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.  相似文献   

5.
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys2nd and Cys6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains.  相似文献   

6.
Fusion proteins integrating dual pesticidal functions have been devised over the last 10 years to improve the effectiveness and potential durability of pest-resistant transgenic crops, but little attention has been paid to the impact of the fusion partners on the actual activity of the resulting hybrids. Here we assessed the ability of the rice cysteine protease inhibitor, oryzacystatin I (OCI), to retain its protease inhibitory potency when used as a template to devise hybrid inhibitors with dual activity against papain-like proteases and carboxypeptidase A (CPA). C-terminal variants of OCI were generated by fusing to its C-terminal end: (i) the primary inhibitory site of the small CPA inhibitor potato carboxypeptidase inhibitor (PCI, amino acids 35-39); or (ii) the complete sequence of PCI (a.a. 1-39). The hybrid inhibitors were expressed in E. coli and tested for their inhibitory activity against papain, CPA and digestive cysteine proteases of herbivorous and predatory arthropods. In contrast with the primary inhibitory site of PCI, the entire PCI attached to OCI was as active against CPA as free, purified PCI. The OCI-PCI hybrids also showed activity against papain, but the presence of extra amino acids at the C terminus of OCI negatively altered its inhibitory potency against cysteine proteases. This negative effect, although not preventing dual binding to papain and CPA, was correlated with an increased binding affinity for papain presumably due to non-specific interactions with the PCI domain. These results confirm the potential of OCI and PCI for the design of fusion inhibitors with dual protease inhibitory activity, but also point out the possible functional costs associated with protein domain grafting to recipient pesticidal proteins.  相似文献   

7.
Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.  相似文献   

8.
The expression of clinically useful proteins in plants has been bolstered by the development of high-yielding systems for transient protein expression using agroinfiltration. There is a need now to know more about how host plant development and metabolism influence the quantity and quality of recombinant proteins. Endogenous proteolysis is a key determinant of the stability and yield of recombinant proteins in plants. Here we characterised cysteine (C1A) and aspartate (A1) protease profiles in leaves of the widely used expression host Nicotiana benthamiana, in relation with the production of a murine IgG, C5-1, targeted to the cell secretory pathway. Agroinfiltration significantly altered the distribution of C1A and A1 proteases along the leaf age gradient, with a correlation between leaf age and the level of proteolysis in whole-cell and apoplast protein extracts. The co-expression of tomato cystatin SlCYS8, an inhibitor of C1A proteases, alongside C5-1 increased antibody yield by nearly 40% after the usual 6-days incubation period, up to ∼3 mg per plant. No positive effect of SlCYS8 was observed in oldest leaves, in line with an increased level of C1A protease activity and a very low expression rate of the inhibitor. By contrast, C5-1 yield was greater by an additional 40% following 8- to 10-days incubations in younger leaves, where high SlCYS8 expression was maintained. These findings confirm that the co-expression of recombinant protease inhibitors is a promising strategy for increasing recombinant protein yields in plants, but that further opportunity exists to improve this approach by addressing the influence of leaf age and proteases of other classes.  相似文献   

9.
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), cause very large economic damage on a variety of field and greenhouse crops. In this study, plant resistance against thrips was introduced into transgenic potato plants through the expression of novel, custom-made, multidomain protease inhibitors. Representative classes of inhibitors of cysteine and aspartic proteases [kininogen domain 3 (K), stefin A (A), cystatin C (C), potato cystatin (P) and equistatin (EIM)] were fused into reading frames consisting of four (K-A-C-P) to five (EIM-K-A-C-P) proteins, and were shown to fold into functional inhibitors in the yeast Pichia pastoris. The multidomain proteins were expressed in potato and found to be more resistant to degradation by plant proteases than the individual domains. In a time span of 14-16 days, transgenic potato plants expressing EIMKACP and KACP at a similar concentration reduced the number of larvae and adults to less than 20% of the control. Leaf damage on protected plants was minimal. Engineered multidomain cysteine protease inhibitors thus provide a novel way of controlling western flower thrips in greenhouse and field crops, and open up possibilities for novel insect resistance applications in transgenic crops.  相似文献   

10.

Background

The enzymatic activity of the four proteases found in the house dust mite Dermatophagoides pteronyssinus is involved in the pathogenesis of allergy. Our aim was to elucidate the activation cascade of their corresponding precursor forms and particularly to highlight the interconnection between proteases during this cascade.

Methods

The cleavage of the four peptides corresponding to the mite zymogen activation sites was studied on the basis of the Förster Resonance Energy Transfer method. The proDer p 6 zymogen was then produced in Pichia pastoris to elucidate its activation mechanism by mite proteases, especially Der p 1. The role of the propeptide in the inhibition of the enzymatic activity of Der p 6 was also examined. Finally, the Der p 1 and Der p 6 proteases were localised via immunolocalisation in D. pteronyssinus.

Results

All peptides were specifically cleaved by Der p 1, such as proDer p 6. The propeptide of proDer p 6 inhibited the proteolytic activity of Der p 6, but once cleaved, it was degraded by the protease. The Der p 1 and Der p 6 proteases were both localised to the midgut of the mite.

Conclusions

Der p 1 in either its recombinant form or in the natural context of house dust mite extracts specifically cleaves all zymogens, thus establishing its role as a major activator of both mite cysteine and serine proteases.

General significance

This finding suggests that Der p 1 may be valuable target against mites.  相似文献   

11.
A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.  相似文献   

12.
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.  相似文献   

13.
14.
15.
The aim of this study was to assess the effects of potato plants expressing a barley cystatin on a potentially cystatin-susceptible natural enemy by predation on susceptible and non-susceptible preys feeding on the plant. We have focussed on the impact of the variant HvCPI-1 C68 → G, in which the only cysteine residue was changed by a glycine, on the growth and digestive physiology of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the Egyptian cotton leafworm (ECW), Spodoptera littoralis. Moreover, we have studied the prey-mediated effects of the barley cystatin at the third trophic level, using the predatory spined soldier bug (SSB), Podisus maculiventris, as a model. Feeding trials conducted with CPB larvae reared on transgenic potato plants expressing the C68 → G variant resulted in significantly lower weight gains compared to those fed on non-transformed (NT) plants. On the contrary, larger weight gains were obtained when ECW larvae, that lack digestive cysteine proteases, were reared on transgenic potato expressing the cystatin, as compared to larvae fed on NT plants. No negative effects on survival and growth were observed when SSB nymphs were exposed to HvCPI-1 C68 → G by predation on either CPB or ECW larvae reared on transgenic potato plants expressing the barley cystatin, despite the fact that the inhibitor suppressed in vitro gut proteolysis of the predatory bug. To investigate the physiological background, biochemical analysis were carried out on guts of insects dissected at the end of the feeding assays. Fernando álvarez-Alfageme and Manuel Martínez are contributed equally to this work.  相似文献   

16.
Although mite major group 1 allergens, Der p 1 and Der f 1, were first isolated as cysteine proteases, some studies reported that natural Der p 1 exhibits mixed cysteine and serine protease activity. Clarifying whether the serine protease activity originates from Der p 1 or is due to contamination is important for distinguishing between the pathogenic proteolytic activities of group 1 allergens and mite-derived serine proteases. Recombinant mite group 1 allergens would be useful tool for addressing this issue, because they are completely free from contamination by mite serine proteases. Recombinant Der p 1 and Der f 1, and highly purified natural forms exhibited only cysteine protease activity. However, commercially available natural forms exhibited both activities, but the two activities were eluted into different fractions in size-exclusion column chromatography. The substrate specificity associated with the serine protease activity was similar to that of Der f 3. These results indicate that the serine protease activity does not originate from group 1 allergens.  相似文献   

17.
Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.  相似文献   

18.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

19.
Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.  相似文献   

20.
Cysteine proteases are known to be associated with programmed cell death, developmental senescence and some types of pathogen and stress-induced responses. In the present study, we have characterized the cysteine protease Tr-cp 14 in white clover (Trifolium repens). Tr-cp 14 belongs to the C1A family of cysteine proteases with homology to XCP1 and XCP2 from Arabidopsis thaliana and p48h-17 from Zinnia elegans, which previously have been reported to be associated with tracheary element differentiation. The proform as well as the processed form of the protein was detected in petioles, flowers and leaves, but the processed form was more abundant in leaves and petioles than in flowers. The Tr-cp 14 protein was localized to differentiating tracheary elements within the xylem, indicating that the cysteine protease is involved in protein re-mobilization during tracheary element differentiation. Immunogold studies suggest that the protease prior to the burst of the vacuole was associated to the ER cisternae. After disruption of the tonoplast, it was found in the cytoplasm, and, in later stages, associated with disintegrating material dispersed throughout the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号