首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study compared the response of common bean (Phaseolus vulgaris L.) to arbuscular mycorrhizal fungi (AMF) and rhizobia strain inoculation. Two common bean genotypes i.e. CocoT and Flamingo varying in their effectiveness for nitrogen fixation were inoculated with Glomus intraradices and Rhizobium tropici CIAT899, and grown for 50 days in soil–sand substrate in glasshouse conditions. Inoculation of common bean plants with the AM fungi resulted in a significant increase in nodulation compared to plants without inoculation. The combined inoculation of AM fungi and rhizobia significantly increased various plant growth parameters compared to simple inoculated plants. In addition, the combined inoculation of AM fungi and rhizobia resulted in significantly higher nitrogen and phosphorus accumulation in the shoots of common bean plants and improved phosphorus use efficiency compared with their controls, which were not dually inoculated. It is concluded that inoculation with rhizobia and arbuscular mycorrhizal fungi could improve the efficiency in phosphorus use for symbiotic nitrogen fixation especially under phosphorus deficiency.  相似文献   

2.
N2 fixation in lines of Phaseolus vulgaris was measured by 15N-isotope dilution to determine whether a programme of crossing and recurrent selection had resulted in enhanced nitrogen fixation. In field experiments on an isohyperthermic Aquic Hapludoll soil the amount of N2 fixed by the different lines ranged from 18 to 36 kg ha–1 (32 to 47% of plant N) in 56 days. The quantity of N2 fixed and the proportion of plant N derived from fixation was not significantly greater in the lines selected for N2 fixation (RIZ lines) than parental lines. Total shoot N ranged from 53 to 77 kg ha–1 and partitioning of N to pods differed from 28 to 52% among the lines which all had similar growth habit and duration. Nodulation patterns were also distinct. Nodules formed early (10 to 15 plant–1 at 13 days) in many lines, and smallest amounts of fixation were observed in those lines which nodulated slowly and did not form substantial nodule mass until after 40 days. The screening criteria used in the selection of the RIZ lines had been largely indirect with other factors such as disease resistance also being included. Progress for increasing N2 fixation over good-fixing parental lines such as BAT76 was not significant and it is recommended that more attention be paid to early nodulation, to the use of soils with lower available N and to inter-crossing of lines having different good N2 fixation traits in order to further enhance the potential for N2 fixation in beans.  相似文献   

3.
Nitrogen fixation in nine common bean (Phaseolus vulgaris L.) lines was estimated using the 15N isotope dilution method at two locations in two seasons. In the first season at one location no N2 fixation was detected while in the second season up to 51 kg N ha–1 were estimated. There were significant differences between lines and correlations between trials were significant for the amounts of N2 fixed, but not for total shoot nitrogen. The plants that fixed the most nitrogen nodulated rapidly after germination. Differences in maximum nodule mass, but not specific nodule activity, were detected also.  相似文献   

4.
A greenhouse experiment was performed to evaluate the effects of plant growth-promoting rhizobacteria (PGPR) on nodulation, biological nitrogen fixation (BNF) and growth of the common bean (Phaseolus vulgaris L. cv. Tenderlake). Single and dual inoculation treatments of bean with Rhizobium and/or PGPR were administered to detect possible changes in the levels of and interactions between the phytohormones IAA and cytokinin. Bean plants cv. Tenderlake were grown in pots containing Fluvic Neosol eutrophic (pH 6.5). Fourteen kilogram aliquots of soil contained in 15-l pots were autoclaved. Bean seeds were surface sterilized and inoculated with Rhizobium tropici (CIAT 899-standard strain) alone and in combination with one of the PGPR strains: Bacillus endophyticus (DSM 13796), B. pumilus (DSM 27), B. subtilis (DSM 704), Paenibacillus lautus (DSM 13411), P. macerans (DSM 24), P. polymyxa (DSM 36), P. polymyxa (Loutit L.) or Bacillus sp.(65E180). The experimental design was randomized block design with three replications. Beans co-inoculated with Rhizobium tropici (CIAT899) and Paenibacillus polymyxa (DSM 36) had higher leghemoglobin concentrations, nitrogenase activity and N2 fixation efficiency and thereby formed associations of greater symbiotic efficiency. Inoculation with Rhizobium and P. polymyxa strain Loutit (L) stimulated nodulation as well as nitrogen fixation. PGPR also stimulated specific-nodulation (number of nodules per gram of root dry weight) increases that translated into higher levels of accumulated nitrogen. The activities of phytohormones depended on their content and interactions with Rhizobium tropici and Paenibacillus and/or Bacillus (PGPR) strains which affect the cytokinin in content in the common bean.  相似文献   

5.
Improvement of dinitrogen fixation in beans (Phaseolus vulgaris L.) will depend on the selection of superior plant genotypes and the presence of efficient rhizobial strains. This study was conducted to evaluate diverse bean lines for N2 fixation potential using the15N-depleted dilution technique under field conditions in Wisconsin, USA. Plants of 21 bean lines and three non-nodulating isolines of soybean received appliin Wisconsin, USA. Plants of 21 bean lines and three non-nodulating isolines of soybean received applications of15N-depleted ammonium sulphate. Shoots harvested at the V6, R3 and R7 stages and dry seeds were analyzed for total N using the Kjeldahl procedure, and the ratio of15N to14N was determind on a MAT 250 mass spectrometer. Nodule occupancy of the applied strain ofR. leguminosarum biovarphaseoli, CIAT 899, was determined in five of the bean lines. Total shoot N content showed a pattern of accumulation similar to shoot dry weight and fixed N2 in the shoot. Based on shoot total N, N2 fixed in the shoot and shoot dry weight Riz 30 and Preto Cariri were identified as being as good fixers as Puebla 152 and Cargamanto appear to begin N2 fixation early. Furthermore, some bean lines that fixed considerable N2 did not translocate a large amount of N to the grains. Preto Cariri accumulated 21.2 kg N ha−1 in the seeds compared to Puebla 152 which accumulated 43.8 kg N ha−1 of the fixed N2 into the grains. At the early sampling, Puebla 152 and 22–27 had a considerable higher percentage of their crown nodules formed by the inoculant strain CIAT 899, than did Rio Tibagi which has been considered a poor N2 fixer.  相似文献   

6.
The value of intra- and interracial populations in common bean (Phaseolus vulgaris L.) needs to be determined in order to create useful genetic variation for maximizing gains from selection, broadening the genetic base of commercial cultivars, and making efficient use of available resources. Five large-seeded parents of race Nueva Granada (N), two small-seeded race Mesoamerica (M), and one medium-seeded race Durango (D) were hybridized to produce one intraracial (N x N) and three interracial (two N x M and one N x D) populations. Seventy-nine F2-derived F6 lines randomly taken from each population along with their parents were evaluated for agronomic traits and markers at Palmira and Popayán, Colombia, in 1990 and 1991. Variation for agronomic traits and for morphological, protein, and isozyme markers was larger in interracial populations than in the intraracial population. Mean seed yield of all lines as well as yield of the highest yielding line from two interracial populations were significantly higher than that of the intraracial population. The highest ( 0.80±0.15) heritability was recorded for 100-seed weight. Values for seed yield varied from 0.19±0.17 to 0.50±0.16. Gains from selection (at 20% selection pressure) for seed yield ranged from 3.9% to 11.4%. Seed yield was positively associated with biomass yield, pods/m2, and days to maturity, but harvest index showed negative correlations with these traits and a positive value with 100-seed weight. Polymorphism was recorded for phaseolin, lectins, protein Group-1 and protein Group-2 fractions, and six isozyme loci. Lines with indeterminate growth habit had significantly (P < 0.01) higher seed yield than lines with determinate growth habit in a Redkloud x MAM 4 population. Also, 23 other associations of markers with agronomic traits other than seed yield were recorded. Of these associations, lines with T phaseolin, the Diap1 2 allele, and lilac flower color tended to possess greater seed weight.  相似文献   

7.
Screening of Rhizobium leguminosarum bv. phaseoli strains showed some that were able to nodulate common beans (Phaseolus vulgaris L.) at high temperatures (35 and 38°C/8 h/day). The nodulation ability was not related to the capability to grow or produce melanin-like pigment in culture media at high temperatures. However, nodules formed at high temperatures were ineffective and plants did not accumulate N in shoots. Two thermal shocks of 40°C/8 h/day at flowering time drastically decreased nitrogenase activity and nodule relative efficiency of plants otherwise grown at 28°C. Recovery of nitrogenase activity began only after seven days, when new nodules formed; total incorporation of N in tops did not recover for 2 weeks. Non-inoculated beans receiving mineral N were not affected by the thermal shock, and when growing continuously at 35 or 38°C had total N accumulated in shoots reduced by only 18%.  相似文献   

8.
Two cultivars of French bean (Phaseolus vulgaris L.) viz. contender and arka komal were planted in polythene bags containing sand and grown under glasshouse conditions. The nodulation status, shoot/root biomass, activities of several nodule enzymes, total soluble protein and leghaemoglobin contents were monitored over the entire growth period. Allantoinase activity in leaves was measured to monitor the ureide degrading capacity. Significant genotype difference was observed in both the cultivars. All the parameters showed a decline after flowering except uricase, which declined before flowering. Malate dehydrogenase and isocitrate dehydrogenase showed a constant decline throughout the growth period. Degree of decline varied with the genotype for all the parameters. Leghaemoglobin content, PEP carboxylase activity and ureide degrading capacity of leaves did not show an appreciable decline in contender and were significantly higher than in arka komal. These factors can be used to increase nitrogen fixation in French bean.  相似文献   

9.
Glutamine synthetase expression was studied in developing root-nodules of common bean with regard to the time-course of specific activity, antigen accumulation, polypeptide composition and in vitro translation products. This analysis shows that the nodule-specific GS polypeptide (GS-gamma) is detected prior to the nitrogenase acetylene-reducing activity, and that its accumulation together with that of the GS-alpha and GS-beta polypeptides vary with nodule age. GS-gamma is present in ineffective nodules, although in a lower ratio to GS-beta than in wild-type nodules. Comparisons of in vitro translated and in vivo synthesized GS polypeptides suggest no post-translational modifications. The possible factors and mechanisms involved in the regulation of expression of GS polypeptides are discussed.  相似文献   

10.
The improvement of N2 fixation in legumes may lead to increased yields and reduced fertilizer requirement. Levels of N2 fixation were determined for three cultivars and nine progeny lines from two inbred backcross common bean (Phaseolus vulgaris L.) populations that were grown at Hancock, Wissconsin in 1984 and 1985 using 15N-depleted (NH4)2SO4. The high N2-fixing line Puebla 152 was the donor parent for both inbred backcross populations and the cultivars Porrillo Sintetico and Sanilac were the recurrent parents for populations 21 and 24, respectively. Total N yield, fixed N2 and % N derived from the atmosphere were determined for whole plants and plant parts at the R3 (50% bloom) and R9 (maturity) growth stages. Significant year-by-line interactions were found for N2 fixation traits among the population 21 lines and parents, but not for population 24 lines and their parents. Measures of N2 fixation at R3 were inadequate to predict N2 fixation at R9. Population 24 lines and parents differed for N2 fixation ability at R9, and fixed N2 was correlated with maturity. The recovery of an inbred backcross progeny line, 24-21, which matured earlier and fixed more N2 than the recurrent parent Sanilac indicated that N2 fixation was heritable and that favorable alleles, independent of maturity, were recovered from a late-maturing, high N2-fixing donor parent by utilizing the inbred backcross breeding method. Since most fixed N2 and non-fixed N (>80%) was found in the seeds at maturity, and most lines did not vary for the distribution of nitrogen throughout the plant, selection for improved remobilization of nitrogen to the seed to increase yield is impractical in this genetic material. The highest N2-fixing lines tended to have high and similar % Ndfa in all plant parts.  相似文献   

11.
Field and greenhouse experiments were conducted to assess the nitrogen fixation rates of four cultivars of common bean (Phaseolus vulgaris L.) at different growth stages. The 15N isotope dilution technique was used to quantify biological nitrogen fixation. In the greenhouse, cultivars M4403 and Kallmet accumulated 301 and 189 mg N plant–1, respectively, up to 63 days after planting (DAP) of which 57 and 43% was derived from atmosphere. Under field conditions, cultivars Bayocel and Flor de Mayo RMC accumulated in 77 DAP, 147 and 135 kg N ha–1, respectively, of which approximately one-half was derived from the atmosphere. The rates of N2 fixation determined at different growth stages increased as the plants developed, and reached a maximum during the reproductive stage both under field and greenhouse conditions. Differences in translocation of N were observed between the cultivars tested, particularly under field conditions. Thus, the fixed N harvest index was 93 and 60 for cultivars Flor de Mayo and Bayocel, respectively. In early stages of growth, the total content of ureides in the plants correlated with the N fixation rates. The findings reported in the present paper can be used to build a strategy for enhancing biological N2 fixation in common bean.  相似文献   

12.
Most dry bean production in Mexico is under non-irrigated conditions in the semi-arid highlands. One of the most limiting factors is insufficient moisture during the reproductive stage and sometimes during the vegetative stage. The objective of this experiment was to study the effect of drought on nodulation, N2 fixation and grain yield of beans. The cultivars evaluated were: Flor de Mayo Bajio, Bayocel, Bat-477 and Honduras-35. The treatments were water stress treatments during vegetative or reproductive stage and a control of minimal stress. To measure N2 fixation, 15N-labelled fertilizer was used. Data for soil moisture, nodule number and nodule dry weight, as well as, straw and grain yield and total N were taken. The results indicated that water stress during vegetative stage depressed nodulation temporarily, but after watering regularly plants not only recovered completely but were nodulated better than the control. Water stress during the reproductive stage depressed nodulation and after watering there was no recovery. Grain yield was not affected by water stress during vegetative stage but it was reduced when water stress was imposed during the reproductive stage. The percentage of N derived from fixation varied among cultivars but was not affected by water stress treatment. The highest N2 fixation occurred in Bayocel and Bat-477 and the lowest in Honduras-35 and F.M. Bajio, although the amounts were not as low as in some other reports.  相似文献   

13.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

14.
Two field experiments were performed to evaluate the nitrogen fixation potential of twenty common bean cultivars and breeding lines during summer and winter seasons of 1986 and 1988, respectively. The 15N isotope dilution method was used to quantify N2 fixation. The cultivars and breeding lines were variable in terms of their N2 fixation. The cv. Caballero was very efficient, with more than 50% N derived from the atmosphere and 60–80 kg N ha–1 fixed in both seasons. Other cultivars were less efficient, since the poorest ones derived less than 30% of their nitrogen from the atmosphere and fixed less than 20 kg N ha–1. After additional testing the best cultivars may be used directly by the farmers for cultivation. The experiments have provided information about which genotypes may be used to breed for enhanced fixation in common bean.  相似文献   

15.
Thirty one selected bean lines were evaluated in the field for ability to support N2 fixation when intercropped with maize which received 0, 30 and 60 kg N ha–1 as ammonium sulphate. The amount of fixed N2 was estimated using the natural variation of 15N and wheat as the standard non-fixing crop. Nitrogen as low as 15 kg N ha–1 at sowing suppressed nodule weight and activity (acetylene reduction activity) but not nodule number, suggesting that the main effect of mineral N was on nodule development and function. 15N data revealed a high potential of the bean genotypes to fix N2, with the most promising ones averaging between 50–60% of seed N coming from fixation. Bean lines CNF-480, Puebla-152, Mexico-309, Negro Argel, CNF-178, Venezuela-350 and WBR22-3, WBR22-50 and WBR22-55 were ranked as good fixers.  相似文献   

16.
Nielsen  Kai L.  Miller  Carter R.  Beck  Douglas  Lynch  Jonathan P. 《Plant and Soil》1999,206(2):181-190
Root growth and architecture are important for phosphorus acquisition due to the relative immobility of P in the soil. Fractal geometry is a potential new approach to the analysis of root architecture. Substantial genetic variation in root growth and architecture has been observed in common bean. Common bean (Phaseolus vulgaris L.) genotypes with contrasting root architecture were grown under moderate and low P conditions in a field experiment. Linear and planar fractal dimension were measured by tracing root intercepts with vertical planes. Linear fractal dimension increased over time in efficient genotypes, but remained fairly constant over time in inefficient genotypes. Planar fractal dimension increased over time for all genotypes, but was higher in efficient than inefficient genotypes at the end of the experiment. Planar fractal dimension of medium P plants was found to correlate with shoot P content indicating fractal dimension to be a possible indicator for root P uptake. The increasing fractal dimension over time indicates that fractal analysis is a sensitive measure of root branching intensity. A less destructive method for acquisition of data that allows for continuous analysis of fractal geometry and thereby screening for more P efficient genotypes in the field is suggested. This method will allow the researcher to conduct fractal analysis and still complete field trials with final yield evaluation.  相似文献   

17.
Changes in growth, symbiotic nitrogen fixation (SNF), acid phosphatase (ACP), and phytase activities to phosphorus availability (15 and 60 μmol KH2PO4 plant−1 week−1) were compared in two recombinant lines (115 and 147) of common bean. Plant growth, nodulation and SNF were genotype and P level-dependent. 147 was more affected by P shortage (15 μmol P) than 115. Four ACP types were revealed in the nodules of both lines, ACP1 exhibiting a higher specific activity under P shortage as compared to the 60 μmol P treatment, especially in 115. A single phytase was revealed for the nodules of both lines and was significantly enhanced by P deficiency. Three ACP types were found in roots and leaves, showing increasing activity under P deficiency, especially in 115. Regardless of P supply, leaf ACP specific activity was higher than that of nodules and roots in the both lines. Interestingly, phosphorus use efficiency for N2 fixation significantly correlated to nodule ACP activity under P shortage in the both lines. The relatively better performance of 115 as compared to 147 under P deficiency could be partly ascribed to the ability of 115 to maintain higher ACP activity. This enzyme might be involved in the remobilization of the plant Pi and its utilization for SNF.  相似文献   

18.
Nitrogen uptake, distribution and remobilization in the vegetative and reproductive parts of the plant were studied in bean (Phaseolus vulgaris L.) cultivars Negro Argel and Rio Tibagi inoculated with either Rhizobium strain C05 or 127 K-17. Greenhouse grown plants were supplied with 2.5 mg N (plant)−1 day−1 as KNO3 or K15NO3 and the relative contribution to total plant nitrogen of mineral and symbiotically fixed nitrogen was determined. Control plants included those entirely dependent on fixed nitrogen as well as uninoculated plants supplied with 10 mg N (plant)−1 day−1. No differences were observed between inoculated treatments in total nitrate reductase activity and in the amount of mineral nitrogen absorbed, but there were considerable differences in the contribution of fixed nitrogen. Nitrogen fixation supplied from 58 to 72% of the total nitrogen assimilated during the bean growth cycle and the symbiotic combinations fixed most of their nitrogen (66 to 78% of total nitrogen) after flowering. Maximum uptake of mineral nitrogen was in the 15-day-period between flowering and mid-podfill (47 to 58% of total mineral nitrogen). Nitrogen partitioning varied with Rhizobium strains, and inoculation with strain C05 increased the nitrogen harvest index of both cultivars. Applied mineral nitrogen had a variable effect and in cv. Negro Argel was more beneficial to vegetative growth, resulting in smaller nitrogen harvest indices. Seed yield was not increased by heavy nitrogen fertilization. In contrast, cv. Rio Tibagi always benefited from nitrogen applications. Among the various nitrogen sources supplying the grain, the most important one was the fixed nitrogen translocated directly from nodules or after a rapid transfer through leaves, representing from 60 to 64% of the total nitrogen incorporated into the seeds.  相似文献   

19.
The common-bean often faces phosphorus deficiency in soils where it is grown. Such a deficiency is a major limitation to yield improvement, especially as the common-bean depends upon nitrogen fixation. Screening for symbiotic nitrogen fixation under phosphorus deficiency was performed with 33 common-bean accessions representing the diversity of 15 European market classes from the Iberian Peninsula. These accessions were inoculated withRhizobium tropici CIAT899 and grown in an aerated nitrogen-free nutrient solution at deficientversus sufficient phosphorous supplies (75 vs. 250 μmol plan−1 week−1) in a glasshouse. A large variability in N2-dependent growth under P deficiency was found with most tolerance to P deficiency among late type IV Andean landraces, with the exception of 3 early type I Andean landraces. From this screening four contrasting landraces were selected for their high efficiency in the use of P for their symbiotic N nutrition, and compared with the cultivar Linex in fields of a reference production area over 3 years. The landraces from the Iberian Peninsula expressed a higher growth than the cultivar Linex, although they showed a lower nodulation. We hypothesize that the identified P tolerance among Iberian Peninsula accessions may be useful for improving symbiotic nitrogen fixation in the common-bean when growth is limited by available soil-P and could contribute to sustainable farming systems by reducing farmers’ dependence on fertilizers.  相似文献   

20.

Aims

Common bean is a major source of protein for many people worldwide. However, the crop is often subjected to drought conditions and its advantage in undertaking symbiotic nitrogen fixation can be severely decreased. The primary objective of this study was to compare the resistance of nitrogen fixation of 12 selected genotypes to soil drying.

Methods

Twelve common bean genotypes of diverse genetic background were compared. Plants were grown in pots and subjected to soil drying over about 2 weeks. Nitrogen fixation was measured daily using a flow-through acetylene reduction technique. The plants were exposed to acetylene for only a short time period allowing repeated measures. The acetylene reduction rate of plants on drying soil was normalized against the rates measured for well-watered plants.

Results

Substantial variability was identified among genotypes in the threshold soil water content at which nitrogen fixation was observed to decrease. Genotypes SER 16, SXB 412, NCB 226, and Calima were found to have the greatest delay in their decrease in nitrogen fixation rates based on soil water content. These four genotypes expressed substantial tolerance of nitrogen fixation to soil drying. These experiments also resulted in data on the threshold soil water contents at which transpiration rates decreased. A decrease in transpiration rates at high soil water contents is potentially advantageous since it allows soil water conservation for use as the severity of the drought increases. There was a general trend of those genotypes with sustained nitrogen fixation rates to low soil water contents also expressing decreased transpiration rates at high soil water contents.

Conclusions

This study identified genetic variation among common bean genotypes in their response of nitrogen fixation and transpiration to soil drying. Five genotypes (SER 16, SXB 412, NCB 226, Calima, and SEA 5) expressed the desired traits for water-limited conditions, which might be exploited in breeding efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号