首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymph nodes (LNs) are secondary lymphoid organs, which are strategically located throughout the body to allow for trapping and presentation of foreign antigens from peripheral tissues to prime the adaptive immune response. Juxtaposed between innate and adaptive immune responses, the LN is an ideal site to study immune cell interactions1,2. Lymphocytes (T cells, B cells and NK cells), dendritic cells (DCs), and macrophages comprise the bulk of bone marrow-derived cellular elements of the LN. These cells are strategically positioned in the LN to allow efficient surveillance of self antigens and potential foreign antigens3-5. The process by which lymphocytes successfully encounter cognate antigens is a subject of intense investigation in recent years, and involves an integration of molecular contacts including antigen receptors, adhesion molecules, chemokines, and stromal structures such as the fibro-reticular network2,6-12. Prior to the development of high-resolution real-time fluorescent in vivo imaging, investigators relied on static imaging, which only offers answers regarding morphology, position, and architecture. While these questions are fundamental in our understanding of immune cell behavior, the limitations intrinsic with this technique does not permit analysis to decipher lymphocyte trafficking and environmental clues that affect dynamic cell behavior. Recently, the development of intravital two-photon laser scanning microscopy (2P-LSM) has allowed investigators to view the dynamic movements and interactions of individual cells within live LNs in situ12-16. In particular, we and others have applied this technique to image cellular behavior and interactions within the popliteal LN, where its compact, dense nature offers the advantage of multiplex data acquisition over a large tissue area with diverse tissue sub-structures11,17-18. It is important to note that this technique offers added benefits over explanted tissue imaging techniques, which require disruption of blood, lymph flow, and ultimately the cellular dynamics of the system. Additionally, explanted tissues have a very limited window of time in which the tissue remains viable for imaging after explant. With proper hydration and monitoring of the animal''s environmental conditions, the imaging time can be significantly extended with this intravital technique. Here, we present a detailed method of preparing mouse popliteal LN for the purpose of performing intravital imaging.  相似文献   

2.

Background

Lymph node metastasis has a significant impact on laryngeal cancer prognosis. The role of lymph node ratio (LNR, ratio of metastatic to examined nodes) in the staging of laryngeal cancer was not reported.

Patients and Methods

Records of laryngeal cancer patients with lymph node involvement from Surveillance, Epidemiology, and End Results database (SEER, training set, N = 1963) and Fudan University Shanghai Cancer Center (FDSCC, validating set, N = 27) were analyzed for the prognostic value of LNR. Kaplan–Meier survival estimates, the Log-rank χ2 test and Cox proportional hazards model were used for univariate and multivariate analysis. Optimal LNR cutoff points were identified by X-tile.

Results

Optimal LNR cutoff points classified patients into three risk groups R1 (≤0.09), R2 (0.09–0.20) and R3 (>0.20), corresponding to 5-year cause-specific survival and overall survival in SEER patients of 55.1%, 40.2%, 28.8% and 43.1%, 31.5%, 21.8%, 2-year disease free survival and disease specific survival in FDSCC patients of 74.1%, 62.5%, 50.0%, and 67.7%, 43.2%, 25.0%, respectively. R3 stratified more high risk patients than N3 with the same survival rate, and R classification clearly separated N2 patients to 3 risk groups and N1 patients to 2 risk groups (R1–2 and R3).

Conclusions

R classification is a significant prognostic factor of laryngeal cancer and should be used as a complementary staging system of N classification.  相似文献   

3.
The prognosis in virtually all solid tumors depends on the presence or absence of lymph node metastases.1-3 Surgical treatment most often combines radical excision of the tumor with a full lymphadenectomy in the drainage area of the tumor. However, removal of lymph nodes is associated with increased morbidity due to infection, wound breakdown and lymphedema.4,5 As an alternative, the sentinel lymph node procedure (SLN) was developed several decades ago to detect the first draining lymph node from the tumor.6 In case of lymphogenic dissemination, the SLN is the first lymph node that is affected (Figure 1). Hence, if the SLN does not contain metastases, downstream lymph nodes will also be free from tumor metastases and need not to be removed. The SLN procedure is part of the treatment for many tumor types, like breast cancer and melanoma, but also for cancer of the vulva and cervix.7 The current standard methodology for SLN-detection is by peritumoral injection of radiocolloid one day prior to surgery, and a colored dye intraoperatively. Disadvantages of the procedure in cervical and vulvar cancer are multiple injections in the genital area, leading to increased psychological distress for the patient, and the use of radioactive colloid.Multispectral fluorescence imaging is an emerging imaging modality that can be applied intraoperatively without the need for injection of radiocolloid. For intraoperative fluorescence imaging, two components are needed: a fluorescent agent and a quantitative optical system for intraoperative imaging. As a fluorophore we have used indocyanine green (ICG). ICG has been used for many decades to assess cardiac function, cerebral perfusion and liver perfusion.8 It is an inert drug with a safe pharmaco-biological profile. When excited at around 750 nm, it emits light in the near-infrared spectrum around 800 nm. A custom-made multispectral fluorescence imaging camera system was used.9.The aim of this video article is to demonstrate the detection of the SLN using intraoperative fluorescence imaging in patients with cervical and vulvar cancer. Fluorescence imaging is used in conjunction with the standard procedure, consisting of radiocolloid and a blue dye. In the future, intraoperative fluorescence imaging might replace the current method and is also easily transferable to other indications like breast cancer and melanoma.  相似文献   

4.

Background

Our goal is to validate the Memorial Sloan-Kettering Cancer Center (MSKCC) nomogram and Stanford Online Calculator (SOC) for predicting non-sentinel lymph node (NSLN) metastasis in Chinese patients, and develop a new model for better prediction of NSLN metastasis.

Methods

The MSKCC nomogram and SOC were used to calculate the probability of NSLN metastasis in 120 breast cancer patients. Univariate and multivariate analyses were performed to evaluate the relationship between NSLN metastasis and clinicopathologic factors, using the medical records of the first 80 breast cancer patients. A new model predicting NSLN metastasis was developed from the 80 patients.

Results

The MSKCC and SOC predicted NSLN metastasis in a series of 120 patients with an area under the receiver operating characteristic curve (AUC) of 0.688 and 0.734, respectively. For predicted probability cut-off points of 10%, the false-negative (FN) rates of MSKCC and SOC were both 4.4%, and the negative predictive value (NPV) 75.0% and 90.0%, respectively. Tumor size, Kiss-1 expression in positive SLN and size of SLN metastasis were independently associated with NSLN metastasis (p<0.05). A new model (Peking University People''s Hospital, PKUPH) was developed using these three variables. The MSKCC, SOC and PKUPH predicted NSLN metastasis in the second 40 patients from the 120 patients with an AUC of 0.624, 0.679 and 0.795, respectively.

Conclusion

MSKCC nomogram and SOC did not perform as well as their original researches in Chinese patients. As a new predictor, Kiss-1 expression in positive SLN correlated independently with NSLN metastasis strongly. PKUPH model achieved higher accuracy than MSKCC and SOC in predicting NSLN metastasis in Chinese patients.  相似文献   

5.
目的:研究超声成像技术对腋窝淋巴结性质的诊断价值。方法:从2013年5月至2014年2月,选择我院50例乳腺癌患者,对所有患者进行弹性成像技术检测出74个腋窝淋巴结。对所有腋窝淋巴结使用四分法进行评分,将其与手术病理结果进行比较。结果:74个腋窝淋巴结中,反应性淋巴结有42个,纵径为(0.9-2.4)cm,平均纵径为(1.31±0.33)cm;乳腺癌腋窝淋巴结转移个数为25个,纵径为(1.2±3.8)cm,平均纵径为(2.04±0.72)cm。良性淋巴结弹性评分大多为1分(54.55%)以及2分(27.27%),恶性淋巴结评分多为3分(63.33%)以及4分(20.00%)。恶性淋巴结评分为(3.12±0.61)分,良性淋巴结评分为(1.68±0.74)分,结果显示,两组淋巴结弹性评分具有较大差异(即P<0.05),具有可比性。结论:综上所述,超声弹性成像技术操作较为简便,效果较为直观,评分法能够提供组织的硬度信息,在临床工作中,与常规超声联合应用有利于提高评价腋窝淋巴结良恶性性质的准确度。值得临床推荐使用。  相似文献   

6.
7.
The stroma is a key component of the lymph node structure and function. However, little is known about its origin, exact cellular composition and the mechanisms governing its formation. Lymph nodes are always encapsulated in adipose tissue and we recently demonstrated the importance of this relation for the formation of lymph node stroma. Adipocyte precursor cells migrate into the lymph node during its development and upon engagement of the Lymphotoxin-b receptor switch off adipogenesis and differentiate into lymphoid stromal cells (Bénézech et al.14). Based on the lymphoid stroma potential of adipose tissue, we present a method using a lymph node/fat pad chimera that allows the lineage tracing of lymph node stromal cell precursors. We show how to isolate newborn lymph nodes and EYFP+ embryonic adipose tissue and make a LN/ EYFP+ fat pad chimera. After transfer under the kidney capsule of a host mouse, the lymph node incorporates local adipose tissue precursor cells and finishes its formation. Progeny analysis of EYFP+ fat pad cells in the resulting lymph nodes can be performed by flow-cytometric analysis of enzymatically digested lymph nodes or by immunofluorescence analysis of lymph nodes cryosections. By using fat pads from different knockout mouse models, this method will provide an efficient way of analyzing the origin of the different lymph node stromal cell populations.  相似文献   

8.

Objective

This systematic review and meta-analysis aimed to evaluate the overall survival, local recurrence, distant metastasis, and complications of mediastinal lymph node dissection (MLND) versus mediastinal lymph node sampling (MLNS) in stage I–IIIA non-small cell lung cancer (NSCLC) patients.

Methods

A systematic search of published literature was conducted using the main databases (MEDLINE, PubMed, EMBASE, and Cochrane databases) to identify relevant randomized controlled trials that compared MLND vs. MLNS in NSCLC patients. Methodological quality of included randomized controlled trials was assessed according to the criteria from the Cochrane Handbook for Systematic Review of Interventions (Version 5.1.0). Meta-analysis was performed using The Cochrane Collaboration’s Review Manager 5.3. The results of the meta-analysis were expressed as hazard ratio (HR) or risk ratio (RR), with their corresponding 95% confidence interval (CI).

Results

We included results reported from six randomized controlled trials, with a total of 1,791 patients included in the primary meta-analysis. Compared to MLNS in NSCLC patients, there was no statistically significant difference in MLND on overall survival (HR = 0.77, 95% CI 0.55 to 1.08; P = 0.13). In addition, the results indicated that local recurrence rate (RR = 0.93, 95% CI 0.68 to 1.28; P = 0.67), distant metastasis rate (RR = 0.88, 95% CI 0.74 to 1.04; P = 0.15), and total complications rate (RR = 1.10, 95% CI 0.67 to 1.79; P = 0.72) were similar, no significant difference found between the two groups.

Conclusions

Results for overall survival, local recurrence rate, and distant metastasis rate were similar between MLND and MLNS in early stage NSCLC patients. There was no evidence that MLND increased complications compared with MLNS. Whether or not MLND is superior to MLNS for stage II–IIIA remains to be determined.  相似文献   

9.
10.
Lymph nodes (LN''s), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infection.The inguinal LN, like all LNs, has an extensive microvascular network supplying it with blood. In general, this microvascular network includes the main feed arteriole of the LN that subsequently branches and feeds high endothelial venules (HEVs). HEVs are specialized for facilitating the trafficking of immune cells into the LN during both homeostasis and infection. How HEVs regulate trafficking into the LN under both of these circumstances is an area of intense exploration. The LN feed arteriole, has direct upstream influence on the HEVs and is the main supply of nutrients and cell rich blood into the LN. Furthermore, changes in the feed arteriole are implicated in facilitating induction of adaptive immune response. The LN microvasculature has obvious importance in maintaining an optimal blood supply to the LN and regulating immune cell influx into the LN, which are crucial elements in proper LN function and subsequently immune response. The ability to study the LN microvasculature in vivo is key to elucidating how the immune system and the microvasculature interact and influence one another within the LN. Here, we present a method for in vivo imaging of the inguinal lymph node. We focus on imaging of the microvasculature of the LN, paying particular attention to methods that ensure the study of healthy vessels, the ability to maintain imaging of viable vessels over a number of hours, and quantification of vessel magnitude. Methods for perfusion of the microvasculature with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.  相似文献   

11.
12.
Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed.  相似文献   

13.

Introduction

To decipher the interaction between the molecular subtype classification and the probability of a non-sentinel node metastasis in breast cancer patients with a metastatic sentinel lymph-node, we applied two validated predictors (Tenon Score and MSKCC Nomogram) on two large independent datasets.

Materials and Methods

Our datasets consisted of 656 and 574 early-stage breast cancer patients with a metastatic sentinel lymph-node biopsy treated at first by surgery. We applied both predictors on the whole dataset and on each molecular immune-phenotype subgroups. The performances of the two predictors were analyzed in terms of discrimination and calibration. Probability of non-sentinel lymph node metastasis was detailed for each molecular subtype.

Results

Similar results were obtained with both predictors. We showed that the performance in terms of discrimination was as expected in ER Positive HER2 negative subgroup in both datasets (MSKCC AUC Dataset 1 = 0.73 [0.69–0.78], MSKCC AUC Dataset 2 = 0.71 (0.65–0.76), Tenon Score AUC Dataset 1 = 0.7 (0.65–0.75), Tenon Score AUC Dataset 2 = 0.72 (0.66–0.76)). Probability of non-sentinel node metastatic involvement was slightly under-estimated. Contradictory results were obtained in other subgroups (ER negative HER2 negative, HER2 positive subgroups) in both datasets probably due to a small sample size issue. We showed that merging the two datasets shifted the performance close to the ER positive HER2 negative subgroup.

Discussion

We showed that validated predictors like the Tenon Score or the MSKCC nomogram built on heterogeneous population of breast cancer performed equally on the different subgroups analyzed. Our present study re-enforce the idea that performing subgroup analysis of such predictors within less than 200 samples subgroup is at major risk of misleading conclusions.  相似文献   

14.
目的:本研究主要目的为确定直肠癌的淋巴结转移的危险因素。方法:通过对1250例于2004年-2008年行直肠癌根治性切除的患者进行单因素和多因素分析,以确定淋巴结转移相关的危险因素,同时对PT分期和肿瘤大小之间的关系进行了相关性分析。结果:直肠癌患者淋巴结转移发生率为41%。在单因素分析中,患者年龄(P=0.008)、肿瘤大小(P=0.003)、PT分期(P<0.0019)以及分化程度(P<0.001)和淋巴结转移相关。在多因素分析中,年龄(P=0.017,OR=0.988,95%可信区间:0.978-0.998)、PT分期(P<0.001,OR=1.952,95%可信区间:1.656-2.302)和分化程度(P<0.001,OR=3.697,95%可信区间:2.112-6.472)是淋巴结转移的独立因素。结论:在直肠癌相关分析中,肿瘤的大小和PT分期呈正相关。年龄、PT分期和肿瘤分化程度是淋巴结转移的独立因素。在直肠癌中,肿瘤的大小和PT分期呈正相关。  相似文献   

15.
16.
17.
Due to its non-invasiveness, high temporal resolution and lower cost, fluorescence imaging is an interesting alternative to the current method (blue dye and radiocolloid) of sentinel lymph node (SLN) mapping in breast cancer. Near-infrared (NIR) emitting cadmium-based Quantum Dots (QDs) could be used for this purpose; however, their wide application is limited because of the toxicity of heavy metals composing the core. Our recent work demonstrated that indium-based QDs exhibit a weak acute local toxicity in vivo compared to their cadmium-based counterparts. In the present study we confirmed the weak toxicity of CuInS(2)/ZnS QDs in different in vitro models. Further in vivo studies in healthy mice showed that In-based QDs could be visualised in SLN in a few minutes after administration with a progressive increase in fluorescence until 8 h. The quantity of indium was assessed in selected organs and tissues by inductively coupled plasma - mass spectroscopy (ICP-MS) as a function of post-injection time. QD levels decrease rapidly at the injection point in the first hours after administration with a parallel increase in the lymph nodes and to a lesser extent in the liver and spleen. In addition, we observed that 3.5% of the injected indium dose was excreted in faeces in the first 4 days, with only trace quantities in the urine. Metastatic spread to the lymph nodes may hamper its visualisation. Therefore, we further performed non-invasive fluorescence measurement of QDs in SLN in tumour-bearing mice. Metastatic status was assessed by immunohistology and molecular techniques and revealed the utmost metastatic invasion of 36% of SLN. Fluorescence signal was the same irrespective of SLN status. Thus, near-infrared emitting cadmium-free QDs could be an excellent SLN tracer.  相似文献   

18.
The presence of lymph node metastasis is a key prognostic factor in colorectal cancer and lymph node yield is an important parameter in assessing the quality of histopathology reporting of colorectal cancer excision specimens. This study assesses the trend in lymph node evaluation over time in a single institution and the relationship with the identification of lymph node positive tumours. It compares the lymph node yield of a contemporary dataset compiled from the histopathology reports of 2178 patients who underwent surgery for primary colorectal cancer between 2005 and 2012 with that of a historic dataset compiled from the histopathology reports of 1038 patients who underwent surgery for colorectal cancer at 5 yearly intervals from 1975 to 2000. The mean lymph node yield was 14.91 in 2005 rising to 21.38 in 2012. In 2012 92.9% of all cases had at least 12 lymph nodes examined. Comparison of the mean lymph node yield and proportion of Dukes C cases shows a significant increase (Pearson correlation = 0.927, p = 0.001) in lymph node yield while there is no corresponding significant trend in the proportion of Dukes C cases (Pearson correlation = −0.138, p = 0.745). This study shows that there is increasing yield of lymph nodes from colorectal cancer excision specimens. However, this is not necessarily associated with an increase number of lymph node positive cancers. Further risk stratifying of colorectal cancer requires consideration of other pathological parameters especially the presence of extramural venous invasion and relevant biomarkers.  相似文献   

19.
High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis.  相似文献   

20.

Background

Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC) located in the left upper division.

Methods

We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy) with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako’s method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station.

Results

We enrolled 417 patients (237 men, 180 women). Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC.

Conclusions

Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号