首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

Tumour microenvironment heterogeneity is believed to play a key role in cancer progression and therapy resistance. However, little is known about micro regional distribution of hypoxia, glycolysis and proliferation in spontaneous solid tumours. The overall aim was simultaneous investigation of micro regional heterogeneity of 64Cu-ATSM (hypoxia) and 18F-FDG (glycolysis) uptake and correlation to endogenous markers of hypoxia, glycolysis, proliferation and angiogenesis to better therapeutically target aggressive tumour regions and prognosticate outcome.

Methods

Exploiting the different half-lives of 64Cu-ATSM (13h) and 18F-FDG (2h) enabled simultaneous investigation of micro regional distribution of hypoxia and glycolysis in 145 tumour pieces from four spontaneous canine soft tissue sarcomas. Pairwise measurements of radioactivity and gene expression of endogenous markers of hypoxia (HIF-1α, CAIX), glycolysis (HK2, GLUT1 and GLUT3), proliferation (Ki-67) and angiogenesis (VEGFA and TF) were performed. Dual tracer autoradiography was compared with Ki-67 immunohistochemistry.

Results

Micro regional heterogeneity in hypoxia and glycolysis within and between tumour sections of each tumour piece was observed. The spatial distribution of 64Cu-ATSM and 18F-FDG was rather similar within each tumour section as reflected in moderate positive significant correlations between the two tracers (ρ = 0.3920–0.7807; p = 0.0180 –<0.0001) based on pixel-to-pixel comparisons of autoradiographies and gamma counting of tumour pieces. 64Cu-ATSM and 18F-FDG correlated positively with gene expression of GLUT1 and GLUT3, but negatively with HIF-1α and CAIX. Significant positive correlations were seen between Ki-67 gene expression and 64Cu-ATSM (ρ = 0.5578, p = 0.0004) and 18F-FDG (ρ = 0.4629–0.7001, p = 0.0001–0.0151). Ki-67 gene expression more consistently correlated with 18F-FDG than with 64Cu-ATSM.

Conclusions

Micro regional heterogeneity of hypoxia and glycolysis was documented in spontaneous canine soft tissue sarcomas. 64Cu-ATSM and 18F-FDG uptakes and distributions showed significant moderate correlations at the micro regional level indicating overlapping, yet different information from the tracers.18F-FDG better reflected cell proliferation as measured by Ki-67 gene expression than 64Cu-ATSM.  相似文献   

2.

Aim

To study whether 18F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between 18F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE−/− mice.

Methods

Nine groups of apoE−/− mice were given normal chow or high-fat diet. At different time-points, 18F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif) ligand 1 (CXCL-1), monocyte chemoattractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, cluster of differentiation molecule (CD)-68, osteopontin (OPN), lectin-like oxidized LDL-receptor (LOX)-1, hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGF), and tissue factor (TF) was measured by means of qPCR.

Results

The uptake of 18F-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with 18F-FDG uptake. The strongest correlation was seen with TF and CD68 (p<0.001). A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of 18F-FDG. Together they could explain 60% of the 18F-FDG uptake.

Conclusion

We have demonstrated that 18F-FDG can be used to follow the progression of atherosclerosis in apoE−/− mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of 18F-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.  相似文献   

3.

Objectives

To investigate the role of functional visceral fat activity assessed by preoperative F-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in colorectal cancer (CRC) for predicting regional lymph node (LN) or distant metastasis.

Method

We evaluated 131 patients with newly diagnosed CRC. They all underwent pre-operative 18F-FDG PET/CT and surgery. Functional fat activity was measured by maximum standardized uptake value (SUVmax) using 18F-FDG PET/CT. Functional visceral fat activity was measured by SUVmax of visceral fat/SUVmax of subcutaneous fat (V/S) ratio. Mann-Whitney U test, χ2 test, Fisher’s exact test, receiver-operating characteristic (ROC) analysis, Spearrman’s correlation coefficient, and uni- and multivariate logistic regression statistical analyses were done.

Results

Patients with higher V/S ratio displayed a significantly higher rate of regional LN (p = 0.004) and distant metastasis (p<0.001). In addition, V/S ratio was the only factor that was significantly associated with distant metastasis. An optimal cut-off V/S ratio of 1.88 was proposed for predicting distant metastasis with a sensitivity of 84.6% and specificity of 78.8% (area under the curve: 0.86; p<0.0001)

Conclusion

Functional visceral fat activity is significantly associated with distant metastasis in CRC patients. Furthermore, V/S ratio can be useful as a complementary factor in predicting distant metastasis.  相似文献   

4.

Purpose

Texture indices (TI) calculated from 18F-FDG PET tumor images show promise for predicting response to therapy and survival. Their calculation involves a resampling of standardized uptake values (SUV) within the tumor. This resampling can be performed differently and significantly impacts the TI values. Our aim was to investigate how the resampling approach affects the ability of TI to reflect tissue-specific pattern of metabolic activity.

Methods

18F-FDG PET were acquired for 48 naïve-treatment patients with non-small cell lung cancer and for a uniform phantom. We studied 7 TI, SUVmax and metabolic volume (MV) in the phantom, tumors and healthy tissue using the usual relative resampling (RR) method and an absolute resampling (AR) method. The differences in TI values between tissue types and cancer subtypes were investigated using Wilcoxon’s tests.

Results

Most RR-based TI were highly correlated with MV for tumors less than 60 mL (Spearman correlation coefficient r between 0.74 and 1), while this correlation was reduced for AR-based TI (r between 0.06 and 0.27 except for RLNU where r = 0.91). Most AR-based TI were significantly different between tumor and healthy tissues (pvalues <0.01 for all 7 TI) and between cancer subtypes (pvalues<0.05 for 6 TI). Healthy tissue and adenocarcinomas exhibited more homogeneous texture than tumor tissue and squamous cell carcinomas respectively.

Conclusion

TI computed using an AR method vary as a function of the tissue type and cancer subtype more than the TI involving the usual RR method. AR-based TI might be useful for tumor characterization.  相似文献   

5.

Purpose

Besides its application in oncology, 18F-FDG PET-CT imaging is also useful in the diagnosis of certain lung infections, inflammatory diseases, and atherosclerotic plaques. Myocardial uptake of 18F-FDG may hamper visualization of the lesions caused by these diseases. Two approaches have been proposed for reducing myocardial uptake in preclinical studies, namely, calcium channel blockers (verapamil) and high-fat diets such as commercial ketogenic diets and sunflower seed diets. The objective of this study was to compare the efficacy of these approaches in reducing myocardial uptake of 18F-FDG in mice.

Methods

We performed two experiments. In experiment A, each animal underwent four 18F-FDG PET/CT scans in the following order: baseline, after administration of verapamil, after two days on ketogenic diet and after two days on sunflower seeds. PET scans were performed 60 minutes after injection of 18.5 MBq of 18F-FDG. In experiment B, the best protocol of the three (ketogenic diet) was evaluated in a lung inflammation model to assess the efficacy of reducing myocardial uptake of 18F-FDG.

Results

Compared with baseline (SUV 2.03±1.21); the greatest reduction in uptake of 18F-FDG was with ketogenic diet (SUV 0.79±0.16; p = 0.008), followed by sunflower seeds (SUV 0.91±0.13; p = 0.015); the reduction in myocardial uptake produced by verapamil was not statistically significant (SUV 1.78±0.79; p = NS). In experiment B, complete suppression of myocardial uptake noticeably improved the visualization of inflamed areas near the heart, while in the case of null or partial myocardial suppression, it was much harder to distinguish lung inflammation from myocardial spillover.

Conclusion

A high-fat diet appeared to be the most effective method for decreasing myocardial uptake of 18F-FDG in healthy mice, outperforming verapamil. Our findings also demonstrate that ketogenic diet actually improves visualization of inflammatory lesions near the heart.  相似文献   

6.

Purpose

(S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid (18F-FSPG) is a novel radiopharmaceutical for Positron Emission Tomography (PET) imaging. It is a glutamate analogue that can be used to measure xC- transporter activity. This study was performed to assess the feasibility of 18F-FSPG for imaging orthotopic brain tumors in small animals and the translation of this approach in human subjects with intracranial malignancies.

Experimental Design

For the small animal study, GS9L glioblastoma cells were implanted into brains of Fischer rats and studied with 18F-FSPG, the 18F-labeled glucose derivative 18F-FDG and with the 18F-labeled amino acid derivative 18F-FET. For the human study, five subjects with either primary or metastatic brain cancer were recruited (mean age 50.4 years). After injection of 300 MBq of 18F-FSPG, 3 whole-body PET/Computed Tomography (CT) scans were obtained and safety parameters were measured. The three subjects with brain metastases also had an 18F-FDG PET/CT scan. Quantitative and qualitative comparison of the scans was performed to assess kinetics, biodistribution, and relative efficacy of the tracers.

Results

In the small animals, the orthotopic brain tumors were visualized well with 18F-FSPG. The high tumor uptake of 18F-FSPG in the GS9L model and the absence of background signal led to good tumor visualization with high contrast (tumor/brain ratio: 32.7). 18F-FDG and 18F-FET showed T/B ratios of 1.7 and 2.8, respectively. In the human pilot study, 18F-FSPG was well tolerated and there was similar distribution in all patients. All malignant lesions were positive with 18F-FSPG except for one low-grade primary brain tumor. In the 18F-FSPG-PET-positive tumors a similar T/B ratio was observed as in the animal model.

Conclusions

18F-FSPG is a novel PET radiopharmaceutical that demonstrates good uptake in both small animal and human studies of intracranial malignancies. Future studies on larger numbers of subjects and a wider array of brain tumors are planned.

Trial Registration

ClinicalTrials.gov NCT01186601  相似文献   

7.

Aim

Aim of this study was to investigate the potential of 18F-FDG PET, diffusion weighted imaging (DWI) and susceptibility-weighted (T2*) MRI to predict response to systemic treatment in patients with colorectal liver metastases. The predictive values of pretreatment measurements and of early changes one week after start of therapy, were evaluated.

Methods

Imaging was performed prior to and one week after start of first line chemotherapy in 39 patients with colorectal liver metastases. 18F-FDG PET scans were performed on a PET/CT scanner and DWI and T2* were performed on a 1.5T MR scanner. The maximum standardized uptake values (SUV), total lesion glycolysis (TLG), apparent diffusion coefficient (ADC) and T2* value were assessed in the same lesions. Up to 5 liver metastases per patient were analyzed. Outcome measures were progression free survival (PFS), overall survival (OS) and size response.

Results

Pretreatment, high SUVmax, high TLG, low ADC and high T2* were associated with a shorter OS. Low pretreatment ADC value was associated with shorter PFS. After 1 week a significant drop in SUVmax and rise in ADC were observed. The drop in SUV was correlated with the rise in ADC (r=-0.58, p=0.002). Neither change in ADC nor in SUV was predictive of PFS or OS. T2* did not significantly change after start of treatment.

Conclusion

Pretreatment SUVmax, TLG, ADC, and T2* values in colorectal liver metastases are predictive of patient outcome. Despite sensitivity of DWI and 18F-FDG PET for early treatment effects, change in these parameters was not predictive of long term outcome.  相似文献   

8.

Background

Orthotopic endometrial cancer models provide a unique tool for studies of tumour growth and metastatic spread. Novel preclinical imaging methods also have the potential to quantify functional tumour characteristics in vivo, with potential relevance for monitoring response to therapy.

Methods

After orthotopic injection with luc-expressing endometrial cancer cells, eleven mice developed disease detected by weekly bioluminescence imaging (BLI). In parallel the same mice underwent positron emission tomography–computed tomography (PET-CT) and magnetic resonance imaging (MRI) employing 18F-fluorodeoxyglocose (18F-FDG) or 18F- fluorothymidine (18F-FLT) and contrast reagent, respectively. The mice were sacrificed when moribund, and post-mortem examination included macroscopic and microscopic examination for validation of growth of primary uterine tumours and metastases. PET-CT was also performed on a patient derived model (PDX) generated from a patient with grade 3 endometrioid endometrial cancer.

Results

Increased BLI signal during tumour growth was accompanied by increasing metabolic tumour volume (MTV) and increasing MTV x mean standard uptake value of the tumour (SUVmean) in 18F-FDG and 18F-FLT PET-CT, and MRI conspicuously depicted the uterine tumour. At necropsy 82% (9/11) of the mice developed metastases detected by the applied imaging methods. 18F-FDG PET proved to be a good imaging method for detection of patient derived tumour tissue.

Conclusions

We demonstrate that all imaging modalities enable monitoring of tumour growth and metastatic spread in an orthotopic mouse model of endometrial carcinoma. Both PET tracers, 18F-FDG and 18F-FLT, appear to be equally feasible for detecting tumour development and represent, together with MRI, promising imaging tools for monitoring of patient-derived xenograft (PDX) cancer models.  相似文献   

9.

Purpose

The Ki-67 labelling index is significant for the management of breast cancer. However, the concordance of Ki-67 expression between preoperative biopsy and postoperative surgical specimens has not been well evaluated. This study aimed to find the correlation in Ki-67 expression between biopsy and surgical specimens and to determine the clinicopathological risk factors associated with discordant values.

Patients and Methods

Ki-67 levels were immunohistochemically measured using paired biopsy and surgical specimens in 310 breast cancer patients between 2008 and 2013. ΔKi-67 was calculated by postoperative Ki-67 minus preoperative levels. The outliers of ΔKi-67 were defined as [lower quartile of ΔKi-67–1.5 × interquartile range (IQR)] or (upper quartile + 1.5 × IQR) and were evaluated according to clinicopathological parameters by logistic regression analysis.

Results

The median preoperative and postoperative Ki-67 levels were 10 (IQR, 15) and 10 (IQR, 25), respectively. Correlation of Ki-67 levels between the two specimens indicated a moderately positive relationship (coefficient = 0.676). Of 310 patients, 44 (14.2%) showed outliers of ΔKi-67 (range, ≤-20 or ≥28). A significant association with poor prognostic factors was found among these patients. Multivariate analysis determined that significant risk factors for outliers of ΔKi-67 were tumor size >1 cm, negative progesterone receptor (PR) expression, grade III cancer, and age ≤35 years. Among 171 patients with luminal human epidermal growth factor receptor 2-negative tumors, breast cancer subtype according to preoperative or postoperative Ki-67 levels discordantly changed in 46 (26.9%) patients and a significant proportion of patients with discordant cases had ≥1 risk factor.

Conclusion

Ki-67 expression showed a substantial concordance between biopsy and surgical specimens. Extremely discordant Ki-67 levels may be associated with aggressive tumor biology. In patients with luminal subtype disease, clinical application of Ki-67 values should be cautious considering types of specimens and clinicopathological risk factors.  相似文献   

10.

Objective

Brown adipose tissue (BAT), a specialized tissue for thermogenesis, plays important roles for metabolism and energy expenditure. Recent studies validated BAT’s presence in human adults, making it an important re-emerging target for various pathologies. During this validation, PET images with 18F-FDG showed significant uptake of 18F-FDG by BAT under certain conditions. Here, we demonstrated that Cerenkov luminescence imaging (CLI) using 18F-FDG could be utilized for in vivo optical imaging of BAT in mice.

Methods

Mice were injected with 18F-FDG and imaged 60 minutes later with open filter and 2 minute acquisition. In vivo activation of BAT was performed by norepinephrine and cold treatment under isoflurane or ketamine anesthesia. Spectral unmixing and 3D imaging reconstruction were conducted with multiple-filter CLI images.

Results

1) It was feasible to use CLI with 18F-FDG to image interscapular BAT in mice, with the majority of the signal (>85%) at the interscapular site originating from BAT; 2) The method was reliable because excellent correlations between in vivo CLI, ex vivo CLI, and ex vivo radioactivity were observed; 3) CLI could be used for monitoring BAT activation under different conditions; 4) CLI signals from the group under short-term isoflurane anesthesia were significantly higher than that from the group under long-term anesthesia; 5) The CLI spectrum of 18F-FDG with a peak at 640 nm in BAT after spectral unmixing reflected the actual context of BAT; 6) Finally 3D reconstruction images showed excellent correlation between the source of the light signal and the location and physical shape of BAT.

Conclusion

CLI with 18F-FDG is a feasible and reliable method for imaging BAT in mice. Compared to PET imaging, CLI is significantly cheaper, faster for 2D planar imaging and easier to use. We believe that this method could be used as an important tool for researchers investigating BAT.  相似文献   

11.

Introduction

In the last decade, (18)F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET and PET/CT) has become one of the major diagnostic tools used in oncology. A significant number of patients who undergo this procedure, due to non-thyroidal reasons, present incidental uptake of (18F-FDG) in the thyroid. The aim of the study was to compare the SUVmax (standardized uptake value) of thyroid focal lesions, which were incidentally found on PET/CT, in relation to the results of thyroid fine-needle aspiration biopsy (FNAB) and/or histopathological evaluation.

Materials and Methods

Patients referred for PET/CT examination, due to non-thyroidal illness, presented focal 18F-FDG uptake in the thyroid and were advised to undergo ultrasonography (US), hormonal evaluation, FNAB and/or total thyroidectomy at our institution.

Results

6614 PET/CT examinations performed in 5520 patients were analyzed. Of the 122 patients with focal thyroid 18F-FDG activity, 82 patients (67.2%) underwent further thyroid evaluation using FNAB. Benign lesions were diagnosed in 46 patients, malignant - in 19 patients (confirmed by post-surgical histopathology), while 17 patients had inconclusive results of cytological assessment. Mean SUVmax of benign lesions was 3.2±2.8 (median = 2.4), while the mean SUVmax value for malignant lesions was 7.1±8.2 (median = 3.5). The risk of malignancy was 16.7% for lesions with a SUVmax under 3, 43.8% for lesions with a SUVmax between 3 and 6, and 54.6% for lesions with a SUVmax over 6. In the group of malignant lesions, a positive correlation between the lesion’s diameter and SUVmax was observed (p = 0.03, r = 0.57).

Conclusions

Subjects with incidental focal uptake of 18F-FDG in thyroid are at a high risk of thyroid malignancy. A high value of SUVmax further increases the risk of malignancy, indicating the necessity for further cytological or histological evaluation. However, as SUVmax correlated with the diameter of malignant lesions, small lesions with focal uptake of 18F-FDG should be interpreted cautiously.  相似文献   

12.

Objective

This study investigated the relationship between aortic 18F-fluoro-2-deoxy-D-glucose (18F-FDG) uptake and clinical and laboratory findings related to atherosclerosis in a general population.

Methods

18F-FDG uptake in the ascending aorta was measured on the positron emission tomography/computed tomography (PET/CT) scans of 211 Japanese adults. The maximum target-to-background ratio (TBR) was compared with clinical and laboratory atherosclerosis findings.

Results

By multivariate regression analysis adjusted for age and sex, TBR-ascending aorta (TBR-A) was significantly correlated with various clinical and laboratory parameters, such as body mass index, log visceral fat area, low-density lipoprotein cholesterol (LDL-C), log fasting immunoreactive insulin, log homeostasis model assessment of insulin resistance, log total adiponectin and log-leptin, in all subjects. Furthermore, by multivariate linear regression analysis adjusted for confounding factors, TBR-A was significantly correlated with LDL-C (β = 0.001, p = 0.03) and log-leptin (β = 0.336, p<0.01) in all subjects.

Conclusion

TBR-A was significantly correlated with LDL-C and log-leptin independent from confounding factors. Our results suggest that aortic 18F-FDG uptake is a good marker of atherosclerosis, even in a general population.  相似文献   

13.

Objectives

Intra-individual spatial overlap analysis of tumor volumes assessed by MRI, the amino acid PET tracer [18F]-FET and the nucleoside PET tracer [18F]-FLT in high-grade gliomas (HGG).

Methods

MRI, [18F]-FET and [18F]-FLT PET data sets were retrospectively analyzed in 23 HGG patients. Morphologic tumor volumes on MRI (post-contrast T1 (cT1) and T2 images) were calculated using a semi-automatic image segmentation method. Metabolic tumor volumes for [18F]-FET and [18F]-FLT PETs were determined by image segmentation using a threshold-based volume of interest analysis. After co-registration with MRI the morphologic and metabolic tumor volumes were compared on an intra-individual basis in order to estimate spatial overlaps using the Spearman''s rank correlation coefficient and the Mann-Whitney U test.

Results

[18F]-FLT uptake was negative in tumors with no or only moderate contrast enhancement on MRI, detecting only 21 of 23 (91%) HGG. In addition, [18F]-FLT uptake was mainly restricted to cT1 tumor areas on MRI and [18F]-FLT volumes strongly correlated with cT1 volumes (r = 0.841, p<0.001). In contrast, [18F]-FET PET detected 22 of 23 (96%) HGG. [18F]-FET uptake beyond areas of cT1 was found in 61% of cases and [18F]-FET volumes showed only a moderate correlation with cT1 volumes (r = 0.573, p<0.001). Metabolic tumor volumes beyond cT1 tumor areas were significantly larger for [18F]-FET compared to [18F]-FLT tracer uptake (8.3 vs. 2.7 cm3, p<0.001).

Conclusion

In HGG [18F]-FET but not [18F]-FLT PET was able to detect metabolic active tumor tissue beyond contrast enhancing tumor on MRI. In contrast to [18F]-FET, blood-brain barrier breakdown seems to be a prerequisite for [18F]-FLT tracer uptake.  相似文献   

14.

Purpose

To explore the value of a new simple lyophilized kit for labeling PRGD2 peptide (18F-ALF-NOTA-PRGD2, denoted as 18F-alfatide) in the determination of metabolic tumor volume (MTV) with micro-PET in lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mice verified by pathologic examination and compared with those using 18F-fluorodeoxyglucose (FDG) PET.

Methods

All LLC tumor-bearing C57BL/6 mice underwent two attenuation-corrected whole-body micro-PET scans with the radiotracers 18F-alfatide and 18F-FDG within two days. 18F-alfatide metabolic tumor volume (VRGD) and 18F-FDG metabolic tumor volume (VFDG) were manually delineated slice by slice on PET images. Pathologic tumor volume (VPath) was measured in vitro after the xenografts were removed.

Results

A total of 37 mice with NSCLC xenografts were enrolled and 33 of them underwent 18F-alfatide PET, and 35 of them underwent 18F-FDG PET and all underwent pathological examination. The mean ± standard deviation of VPath, VRGD, and VFDG were 0.59±0.32 cm3 (range,0.13~1.64 cm3), 0.61±0.37 cm3 (range,0.15~1.86 cm3), and 1.24±0.53 cm3 (range,0.17~2.20 cm3), respectively. VPath vs. VRGD, VPath vs. VFDG, and VRGD vs. VFDG comparisons were t = -0.145, P = 0.885, t = -6.239, P<0.001, and t = -5.661, P<0.001, respectively. No significant difference was found between VPath and VRGD. VFDG was much larger than VRGD and VPath. VRGD seemed more approximate to the pathologic gross tumor volume. Furthermore, VPath was more strongly correlated with VRGD (R = 0.964,P<0.001) than with VFDG (R = 0.584,P<0.001).

Conclusions

18F-alfatide PET provided a better estimation of gross tumor volume than 18F-FDG PET in LLC tumor-bearing C57BL/6 mice.  相似文献   

15.

Objective

Inflammation is an important contributor to atherosclerosis progression. A glucose analogue 18F-fluorodeoxyglucose ([18F]FDG) has been used to detect atherosclerotic inflammation. However, it is not known to what extent [18F]FDG is taken up in different stages of atherosclerosis. We aimed to study the uptake of [18F]FDG to various stages of coronary plaques in a pig model.

Methods

First, diabetes was caused by streptozotocin injections (50 mg/kg for 3 days) in farm pigs (n = 10). After 6 months on high-fat diet, pigs underwent dual-gated cardiac PET/CT to measure [18F]FDG uptake in coronary arteries. Coronary segments (n = 33) were harvested for ex vivo measurement of radioactivity and autoradiography (ARG).

Results

Intimal thickening was observed in 16 segments and atheroma type plaques in 10 segments. Compared with the normal vessel wall, ARG showed 1.7±0.7 times higher [18F]FDG accumulation in the intimal thickening and 4.1±2.3 times higher in the atheromas (P = 0.004 and P = 0.003, respectively). Ex vivo mean vessel-to-blood ratio was higher in segments with atheroma than those without atherosclerosis (2.6±1.2 vs. 1.3±0.7, P = 0.04). In vivo PET imaging showed the highest target-to-background ratio (TBR) of 2.7. However, maximum TBR was not significantly different in segments without atherosclerosis (1.1±0.5) and either intimal thickening (1.2±0.4, P = 1.0) or atheroma (1.6±0.6, P = 0.4).

Conclusions

We found increased uptake of [18F]FDG in coronary atherosclerotic lesions in a pig model. However, uptake in these early stage lesions was not detectable with in vivo PET imaging. Further studies are needed to clarify whether visible [18F]FDG uptake in coronary arteries represents more advanced, highly inflamed plaques.  相似文献   

16.

Background and Objective

The overexpression of gelatinases, that is, matrix metalloproteinase MMP2 and MMP9, has been associated with tumor progression, invasion, and metastasis. To image MMP2 in tumors, we developed a novel ligand termed [18F]AlF-NOTA-C6, with consideration that: c(KAHWGFTLD)NH2 (herein, C6) is a selective gelatinase inhibitor; Cy5.5-C6 has been visualized in many in vivo tumor models; positron emission tomography (PET) has a higher detection sensitivity and a wider field of view than optical imaging; fluorine-18 (18F) is the optimal PET radioisotope, and the creation of a [18F]AlF-peptide complex is a simple procedure.

Methods

C6 was conjugated to the bifunctional chelator NOTA (1, 4, 7-triazacyclononanetriacetic acid) for radiolabeling [18F]AlF conjugation. The MMP2-binding characteristics and tumor-targeting efficacy of [18F]AlF-NOTA-C6 were tested in vitro and in vivo.

Results

The non-decay corrected yield of [18F]AlF-NOTA-C6 was 46.2–64.2%, and the radiochemical purity exceeded 95%. [18F]AlF-NOTA-C6 was favorably retained in SKOV3 and PC3 cells, determined by cell uptake. Using NOTA-C6 as a competitive ligand, the uptake of [18F]AlF-NOTA-C6 in SKOV3 cells decreased in a dose-dependent manner. In biodistribution and PET imaging studies, higher radioactivity concentrations were observed in tumors. Pre-injection of C6 caused a marked reduction in tumor tissue uptake. Immunohistochemistry showed MMP2 in tumor tissues.

Conclusions

[18F]AlF-NOTA-C6 was easy to synthesize and has substantial potential as an imaging agent that targets MMP2 in tumors.  相似文献   

17.
ObjectiveRadioresistance of tumor cells is a major factor associated with failure of radiotherapy (RT). This study aimed to investigate the effect of BRCA1 knockdown on MDA-MB231 breast cancer cell radiosensitivity.Materials and methodsShort hairpin RNA (shRNA) was used to knockdown BRCA1 gene in MDA-MB231 cells. Cell viability and proliferative capacity were assessed by CCK-8 and colony formation assays, respectively. We established xenograft models in nude mice to evaluate tumor volume and tumor weight. The mice were imaged by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) before and after RT to evaluate changes in maximum standardized uptake value (SUVmax) and tumor SUVmax/muscle SUVmax (TMR). Changes in HIF-1α, Glut-1 and Ki-67 were analyzed and the correlation between 18F-FDG uptake and tumor biology was analyzed.ResultsCompared with the control cells, RT significantly reduced cell viability and colony formation capacity in cells with the BRCA1 gene knockdown. In vivo assays showed that there was obvious delay in the tumor growth in the shBRCA1+RT group compared with the control group. 18F-FDG Micro PET/CT indicated a reduction in glucose metabolism in the shBRCA1+RT group, with statistically significant differences in both the SUVmax and TMR. The data showed the expression of HIF-1α, Glut-1 and Ki-67 was downregulated in the shBRCA1+RT group, and both SUVmax and TMR had significant correlation with tumor biology.ConclusionThese results demonstrated that BRCA1 knockdown improves the sensitivity of MDA-MB231 breast cancer cells to RT. In addition, 18F-FDG PET/CT imaging allows non-invasive analysis of tumor biology and assessment of radiosensitivity.  相似文献   

18.

Background

Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)–the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1) developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2) validating the system on ex vivo murine plaques.

Methods

A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG) and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose (6-NBDG), respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed.

Results

Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs) exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs) (2.6×104±1.4×103 vs. 5.4×103±1.3×103 A.U., P = 0.008). Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6×102±2.7×101 vs. 3.8×101±5.9 A.U., P = 0.002). The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs.

Conclusions

This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a promising novel fluorescent probe for detecting macrophage-rich atherosclerotic plaques.  相似文献   

19.

Background

This study investigated the relationships between background intestinal uptake on 18F–FDG PET and cardio-metabolic risk (CMR) factors.

Methods

A total of 326 female patients that underwent 18F–FDG PET to determine the initial stage of breast cancer were enrolled. None of the patients had history of diabetes or hypertension. The background intestinal uptake on PET was visually graded (low vs. high uptake group) and quantitatively measured using the maximal standardized uptake value (SUVmax). SUVmax of 7 bowel segments (duodenum, jejunum, ileum, cecum, hepatic flexure, splenic flexure, and descending colon-sigmoid junction) were averaged for the total bowel (TB SUVmax). Age, body mass index (BMI), fasting blood glucose level (BST), triglyceride (TG), cholesterol, high density lipoprotein (HDL), and low density lipoprotein (LDL) were the considered CMR factors. The relationships between background intestinal 18F–FDG uptake on PET and diverse CMR factors were analyzed.

Results

The visual grades based on background intestinal 18F–FDG uptake classified 100 (30.7%) patients into the low uptake group, while 226 (69.3%) were classified into the high uptake group. Among CMR factors, age (p = 0.004), BMI (p<0.001), and TG (p<0.001) were significantly different according to visual grade of background intestinal 18F–FDG uptake. Quantitative TB SUVmax showed significant positive correlation with age (r = 0.203, p<0.001), BMI (r = 0.373, p<0.001), TG (r = 0.338, p<0.001), cholesterol (r = 0.148, p = 0.008), and LDL (r = 0.143, p = 0.024) and significant negative correlation with HDL (r = -0.147, p = 0.022). Multivariate analysis indicated that BMI and TG were independent factors in both visually graded background intestinal 18F–FDG uptake (p = 0.027 and p = 0.023, respectively) and quantitatively measured TB SUVmax (p = 0.006 and p = 0.004, respectively).

Conclusion

Increased background intestinal 18F–FDG uptake on PET may suggest alteration of lipid metabolism and risk of cardio-metabolic disease in non-diabetic and non-hypertensive breast cancer patients.  相似文献   

20.

Background

3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use 18F-FLT positron emission tomography (PET) to study treatment responses to a new anti-cancer compound. To do so, we studied early anti-proliferative effects of the experimental chemotherapy Top216 non-invasively by PET.

Methodology/Principal Findings

In vivo uptake of 18F-FLT in human ovary cancer xenografts in mice (A2780) was studied at various time points after Top216 treatment (50 mg/kg i.v. at 0 and 48 hours) was initiated. Baseline 18F-FLT scans were made before either Top216 (n = 7–10) or vehicle (n = 5–7) was injected and repeated after 2 and 6 hours and 1 and 5 days of treatment. A parallel study was made with 2′-deoxy-2′-[18F]fluoro-D-glucose (18F-FDG) (n = 8). Tracer uptake was quantified using small animal PET/CT. Imaging results were validated by tumor volume changes and gene-expression of Ki67 and TK1. Top216 (50 mg/kg 0 and 48 hours) inhibited the growth of the A2780 tumor compared to the control group (P<0.001). 18F-FLT uptake decreased significantly at 2 hours (−52%; P<0.001), 6 hours (−49%; P = 0.002) and Day 1 (−47%; P<0.001) after Top216 treatment. At Day 5 18F-FLT uptake was comparable to uptake in the control group. Uptake of 18F-FLT was unchanged in the control group during the experiment. In the treatment group, uptake of 18F-FDG was significantly decreased at 6 hours (−21%; P = 0.003), Day 1 (−29%; P<0.001) and Day 5 (−19%; P = 0.05) compared to baseline.

Conclusions/Significance

One injection with Top216 initiated a fast and significant decrease in cell-proliferation assessable by 18F-FLT after 2 hours. The early reductions in tumor cell proliferation preceded changes in tumor size. Our data indicate that 18F-FLT PET is promising for the early non-invasive assessment of chemotherapy effects in both drug development and for tailoring therapy in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号